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The adiabatic-nuclei theory, which is widely used in electron-molecule scattering calculations of cross sec-
tions for nuclear excitation, is known to be invalid near threshold. A new ‘‘scaling procedure’’ for correct-
ing the adiabatic-nuclei theory for rotational excitation is introduced and applied to e-H, collisions in the
rigid-rotor approximation. At near-threshold energies, the resulting cross sections are shown to be in very
good agreement with accurate laboratory-frame close-coupling results.

The adiabatic-nuclei (AN) formulation of electron-
molecule scattering theory has played an important role ever
since its introduction by Drozdov! and Chase.? The impor-
tance of this theory®~!® derives primarily from the concep-
tual and computational simplifications that result from
separation of the nuclear dynamics and the distortion of the
scattering function.!* This formulation treats the motion of
the scattering electron as adiabatic with respect to the nu-
clear motions of the molecule, and thus is valid only at high
enough scattering energies so that the system can be treated
in this fashion. (Thus the AN approximation is expected to
be invalid for near-threshold collisions.!®~!°) Even when,
as is often the case, the rigid-rotor approximation® is used,
the adiabatic-nuclear-rotation (ANR) theory is very useful,
since an exact treatment of the effect of the rotational
dynamics on the scattering electron is computationally in-
tractable for almost all systems.

In previous papers!’ we have shown that the ANR theory
for the calculation of differential and integrated cross sec-
tions (as applied to rotational excitation of H, by electron
impact) breaks down at energies surprisingly far from
threshold. Laboratory-frame close-coupling?! (LFCC) calcu-
lations,?? which accurately account for the effects of the nu-
clear motion, were used to obtain benchmark cross sections
for comparison. These studies showed that the accuracy of
the ANR integrated cross sections deteriorates as threshold
is approached, from more than 10% error at scattering ener-
gies of 3 times the rotational threshold energy. More seri-
ously, at scattering energies of over 100 times the threshold
energy, significant qualitative errors were found in the ANR
differential cross sections. In an effort to correct these defi-
ciencies, a procedure based on Nesbet’s energy-modified
adiabatic (EMA) theory'®?® was implemented. Even at
energies where this produces accurate integrated cross sec-
tions, it is unable to consistently reproduce the qualitative
dependence of the LFCC differential cross sections on
scattering angle.

The principal reason for this serious breakdown of the
ANR theory near threshold is found in the energy depen-
dence of the ANR scattering matrix. As discussed in Sec.
IIC of paper I'® as the scattering energy approaches
threshold, the ANR K matrix (transformed into the labora-
tory representation via the rotational-frame transformation
of Chang and Fano®) does not have the correct energy
dependence, nor does it approach the correct zero-energy
limit. Specifically, the elements of the LFCC K matrix go
to zero as the final state wave number k;— 0 according to
the threshold law

K/J‘Jo‘o k=0 AR M
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In contrast, the ANR K-matrix elements, evaluated at the

body energy’®® k# and transformed to the laboratory
representation, behave according to the threshold law
J
~ kp, 2
K il ko ¥ @

independent of the final-state wave number (for the quad-
rupole interaction). This behavior is illustrated in Fig. 1,
which shows LFCC and ANR d— s and p — p K-matrix
elements for initial and final rotor states jo=0, j=2 as a
function of the initial-state wave number kg.2*

Physically, the incorrect near-threshold behavior of .Z’],,,O,o

arises from the neglect of the rotational Hamiltonian #7y in
the calculation of the body-frame fixed-nuclei scattering
function. Perturbations due to this Hamiltonian are impor-
tant at very low scattering energies, since significant distor-
tion of the scattering function occurs in the long-range re-
gion where &5, is a dominant term in the system Hamil-
tonian.

The scaled adiabatic-nuclear-rotation (SANR)  theory
derives from the fact that near threshold most of the LFCC
and ANR K-matrix elements reduce to their counterparts in
the first Born approximation? (FBA), which, of course,
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FIG. 1. Near-threshold energy dependence of the most important
K-matrix elements for the jo=0-— j=2 excitation of H, in the
rigid-rotor approximation (with R =1.4a,). Matrix elements shown
were determined using the LFCC (solid curve), SANR (plusses),
and ANR (crosses) theories. In the latter two calculations, body-
frame K-matrix elements were transformed into the laboratory
representation [Ref. (23)]. (a) d — s element (K 02); (0) p—p
element (K}, o1).

obey the threshold laws (1) and (2). The FBA itself is a
poor approximation for rotational excitation except very near
threshold.!”® However, we can correct the energy depen-
dence of the ANR scattering matrix by ‘‘scaling’’ each ele-
ment by the ratio of the corresponding laboratory-frame
FBA and body-frame FBA matrix elements. Since the K
matrix is an analytic function of energy?® (at the energies of

interest), it is reasonable to expect the resulting SANR K
matrix to yield accurate rotational-excitation cross sections
at energies where the FBA and ANR theories fail to do so.
Clearly, the fact that the laboratory-frame and body-frame
Born approximations are different (cf. Sec. IIC of paper I)
is crucial to the SANR procedure.

The formulas for the FBA K matrices are derived in the
appendix of paper I. In the present paper we consider elec-
tronically elastic scattering from linear molecules in the rigid-
rotor  approximation. The LAB-FBA and (frame-
transformed) ANR-FBA K-matrix elements that are re-
quired in the SANR procedure [as obtained from Egs. (A1),
(A3), and (A14) of paper I] are

Kiygig= — 2(kyko) 2 S/AGLjlGDRE Gilijolokiko) . (3)
Kiiyg 1= —2ks xfo(j,l;jo,lo;J)Rf (Lloks) , )

where J is the total angular momentum, / is the orbital an-
gular momentum, ko and k; are initial- and final-state chan-
nel wave numbers, respectively, k, is the body wave
number, f, is an angular-coupling coefficient,?! and R¥ and
R 8 are radial integrals over the potential [given in Egs. (A6)
and (A16) of paper I].

In ‘““‘conventional’’ ANR theory, where k; = ko, the cross
section for rotational excitation must be multiplied by the
wave-number ratio k;/kq to ensure that they go to zero at
threshold.® At near-threshold energies, where the FBA is
valid and the cross section is therefore proportional to the
square of the appropriate K-matrix element, this correction
is equivalent to premultiplying Eq. (4) by (k;/ko)V2. This
modification effectively makes Egs. (3) and (4) identical ex-
cept for the fact that the radial integrals R{ and R are dif-
ferent.

The SANR procedure which follows is intended to correct
the energy dependence of the ANR K matrices taking this
difference into account: (1) Calculate the K matrix in the
body-frame fixed-nuclei representation;?®?? (2) transform
this K matrix into the laboratory representation using the
rotational frame transformation of Chang and Fano;Z (3)
scale the resultant K matrix by multiplying each element by
the corresponding ratio of LAB-FBA to ANR-FBA K-
matrix elements given by Egs. (3) and (4); (4) from this
scaled K matrix, obtain the T matrix [cf. paper 1, Eq. (21)]
and from it desired cross sections.?%2-?7

To check the utility of this procedure we shall compare
SANR cross sections with those obtained from benchmark
LFCC calculations.!”® These comparisons are shown in
Table I and Figs. 1-4 for e-H, scattering. [The interaction
potential used in calculating these results includes static,?
exchange (tuned-free-electron gas model?®), and ab initio
nonadiabatic polarization’® contributions. The potential,
scattering theory, and computational procedures are
described in Secs. III and IV of paper 1.] Although results
only for jo=0— j=2 are shown in Figs. 2-4, similar
results were obtained for other excitations (cf., Table I).

Figure 1 illustrates the excellent agreement between
SANR and LFCC K-matrix elements at near-threshold en-
ergies, agreement that is not obtained when the ANR
theory is used. In Fig. 2, the percent differences from
benchmark LFCC integrated cross sections are compared for
the ANR, EMA, and SANR theories. At scattering ener-
gies below 0.1 eV, the SANR cross sections are the most ac-
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TABLE I. Integrated e-H, rotational-excitation cross sections for
fixed R =144y Comparison of SANR and benchmark LFCC
results (cross sections in ag).

0— 22 1— 3

E (meV) SANR LFCC SANR LFCC
44.19 0.0131 0.0124
45.0 0.0346 0.0328
47.0 0.0607 0.0578
50.0 0.0857 0.0821
65.0 0.1553 0.1505

80.0 0.1979 0.1923 0.0426 0.0403

100 0.2405 0.2336 0.0873 0.0834

200 0.3908 0.3784 0.1998 0.1906

500 0.8077 0.7140 0.4603 0.4393

2 Threshold = 44.05 meV. b Threshold = 73.00 meV.

curate of these three approximate results. At higher scatter-
ing energies, the EMA yields slightly more accurate in-
tegrated cross sections, although examination of the dif-
ferential cross sections for this excitation reveals that one
must still use the SANR theory to obtain the correct depen-
dence on scattering angle (see especially Fig. 4). Of course,
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FIG. 2. Test of the validity of three approximate scattering
theories for the jo=0— j =2 excitation of the H, in the rigid-rotor
approximation (with R =1.4ay). For the ANR (crosses), EMA
(plusses), and SANR (solid curve) theories, the percent difference
of the approximate cross section from the LFCC cross section is
shown.
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FIG. 3. Differential cross section for the jo=0— j =2 rotational
excitation of Hj in the rigid-rotor approximation (with R = 1.4a,) at
a scattering energy of 50.0 meV. Results from calculations using

“the LFCC (solid curve), ANR (crosses), EMA (plusses), and

SANR (triangles) theories are shown. See Ref. 19(b) for more ex-
tensive graphs of differential cross sections in the first two theories.

as the scattering energy increases from threshold, the LFCC
K-matrix elements deviate from the simple threshold law
(1), and one would not expect the SANR procedure to give
the correct energy dependence. Indeed, for scattering above
about 1.0 eV, conventional ANR theory leads to more accu-
rate integrated cross sections than does the SANR method.
This observation emphasizes that the SANR procedure is suit-
able for near-threshold rotational excitation, where the AN ap-
proximation is invalid. Examination of Figs. 3 and 4 shows
that the SANR differential cross sections at near-threshold
energies are in quantitative agreement with the LFCC
results. Note that even the low-angle ‘‘dip’’ in the 0.1-eV
LFCC differential cross section is reproduced by the SANR
method, in contrast to the ANR and EMA procedures.
Perhaps surprisingly, the SANR percent differences in
Fig. 2 do not approach zero at threshold. This result is a
consequence of a small ‘‘mismatch’ in the exit-channel
wave numbers for the FBA K-matrix elements used in the
SANR procedure. At very low energies (below about 65.0
meV), the d — s K-matrix elements make the dominant
contribution to the jo=0— j=2 cross section.’! The
LAB-FBA and ANR-FBA approximations to these matrix
elements are not equally accurate at these energies, since
the LFCC exit-channel wave number k; is approaching zero
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FIG. 4. Same as Fig. 3 for a scattering energy of 100.0 meV. An
explanation of the small-angle ‘‘dip’’ in this cross section can be
found in Ref. 19(b).

while the body wave number &k, is approaching
Kihresh= [2(sj—ej0)]1/2, where €, is the target energy in the
Jjth rotational state. For the jo=0— j=2 excitation in
Hj, kinresn =0.057ag", a large enough value that the result-
ing mismatch affects the SANR procedure very near thresh-
old. (This problem is peculiar to the e-H, system, which
has an anomalously large rotational constant.) At energies
above 65.0 meV, this inconsistency in the exit-channel wave
number has no effect.

In summary, we have introduced a procedure for correct-
ing the ANR K matrix for near-threshold rotational excita-
tion; for e-H, collisions, this procedure gives excellent
agreement with LFCC results. This SANR method is easy
to implement and requires very little additional computing
time. This paper has not dealt with vibrational excitation,
for which the AN theory is much less accurate than for ro-
tational excitation.’? Because the FBA is not very accurate
for near-threshold vibrational excitation,?® the SANR
method is not likely to be extendable to vibration.
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