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Abstract

As part of an ongoing investigation of cold-molecule collisions involving nitric oxide (NO), we

here theoretically assess the first- and second-order perturbation-theory approximations to the

Stark shifts; such approximations have been used almost exclusively in previous published research

on NO in external electric fields. We perform this assessment by comparison to Stark shifts from

the corresponding nonperturbative two-state model, considering field strengths from zero to values

typical of current experimental studies of cold molecules. To facilitate future use of this model,

we give expressions for the Stark energies in a generic form that can trivially be applied to any

molecules in the class under consideration. To provide insight into the validity of the two-state

model, we also experimentally assess the two-state Stark shifts for NO.

PACS numbers: 33.55.Be,33.80.Ps

∗Electronic address: morrison@nhn.ou.edu

1



I. INTRODUCTION

Laser cooling and trapping of atoms has produced a wealth of fundamental and applied

physics because these techniques allow unprecedented control of the external degrees of free-

dom of the trapped particles [see, for example, Refs. 1–3]. A high point of this research was

the production of Bose-Einstein condensation of dilute gases in traps formed by electromag-

netic fields [see, for example, Ref. 4, 5]. Because laser cooling lends itself most easily to

the alkali metals, these experiments use conservative confining potentials with either static

magnetic fields (the Zeeman effect) or laser fields (the ac Stark effect).

Currently researchers are developing new techniques for producing cold (T . 1 K) and

ultracold (T . 1 mK) molecules [108]. The idea is to trap samples of cold paramagnetic or

polar molecules using techniques similar to those that have successfully trapped alkali metal

atoms [6, 7]. The intense current interest in trapped cold molecules stems from several

features of these systems. Cold molecules exhibit intriguing collision phenomena [8] and

novel collision dynamics [9, 10]. The chemistry may be controlled at the quantum level

using static electromagnetic fields and modified through Feshbach resonances [11]. New

molecular complexes can be created through photoassociation [12] or through field-linked

states [13, 14]. Cold molecules may serve as quantum computers [15]. Traps with non-zero

field minima [16] may have sufficiently long trap lifetimes to enable measurement of the

electric dipole moment of the electron using molecules [17–19].

Many molecules have permanent electric dipole moments, so their quantum states exhibit

large dc Stark shifts. This property can be exploited to construct deep electrostatic confining

potentials [7]. The present work was motivated in part by experimental programs at the

University of Oklahoma [20] and elsewhere [21] to perform cold-molecule experiments on

nitric oxide (NO) using electrostatic trapping techniques that involve the dc Stark effect

at field strengths on the order of 100 kV/cm. Specifically, we are interested in NO in its

ground (2Π) state.

Prior theoretical [22, 23] and experimental [24–29] research on the Stark effect in NO

focused on microwave spectroscopy, where the applied electric fields are quite weak. This

feature has two consequences that affect analysis of microwave spectra. First, for weak ex-

ternal fields, hyperfine effects must be incorporated into the theoretical analysis [26, 30–35].

(Some microwave spectroscopy experiments on molecules other than NO require nonpertur-
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bative treatments similar to the one in this paper [see, for example, Ref. 36].) Second, for

weak fields second-order perturbation theory—the quadratic Stark effect—accurately ap-

proximates the Stark shifts. Consequently, almost all prior literature on the Stark effect

in NO makes heavy use of perturbative treatments. Neither of these consequences, however,

necessarily pertains to the much stronger fields used in current Stark-effect-based techniques

for cooling and trapping molecules.

To be sure, current computers often permit one to simply forego consideration of a per-

turbative treatment [109]. Cold-molecule physics, however, is one of several contexts in

which the suitability of perturbation theory is an issue that may be of great importance.

For example, the recent (2004) exhaustive analysis of the Stark slower by Friedrich [37]

uses perturbation-based Stark shifts to simplify subsequent mathematical analysis. Simi-

larly, recent discussions of the feasibility of constructing a storage ring for polar molecules

in strong-field seeking states [38, 39] consider perturbative treatments of the Stark effect.

Perturbation theory also plays a role in recent calculations related to the use of electric

fields to align molecules [40, 41]. Finally, work published since about 1980 on trajectory

simulations of Stark hexapole guides for molecular beams have used either first-order [42–44]

or second-order [45, 46] perturbation theory, or a two-state model [47] similar to the one

described in Sec. III. In recent literature on cold-molecule experiments that use the Stark

effect, some use a perturbative theory [see, for example, Refs. 48–50]; many papers, however,

do not contain information on how the Stark effect is treated [see, for example, Refs. 51–55].

Although the present research concerns the Stark effect in NO, some of our results and

conclusions pertain to other diatomic radicals with 2Π ground electronic states in situations

where the hyperfine Hamiltonian is negligible compared to other terms in the system Hamil-

tonian (including the Stark Hamiltonian), the two states of interest are well-separated in

energy from all other states. Even with these caveats, this study encompasses a number

important molecules, including LiO, OH, ClO, BeH, SH, PbF, YbF, and CH.

The present paper has two goals. The first goal is to investigate analytically and quantita-

tively the validity of perturbative treatments of the Stark effect for NO at fields characteristic

of current cold-molecule experimentsse. The second goal is to shed light on the accuracy of

the non-perturbative equations for the Stark shifst in NO. This goal we accomplish through

comparison to experimental data.

Specifically, in Sec. III we adapt to the problem at hand—the Stark effect for NO (and
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similar molecules) at electric fields as large as 100 kV/ cm—the two-state model of time-

independent quantum mechanics [56, p. 253] (see Sec. III A). We then obtain the approxi-

mate linear and quadratic Stark shifts of perturbation theory by truncating series expansions

of the two-state shifts (Sec. III B). With this background, we compare these perturbative

approximations to the two-state shifts in Sec. III C in order to quantify the errors introduced

by perturbation theory for field strengths from 0 to 100 kV/ cm. Within this range we have

found errors in perturbative Stark shifts that are sufficiently large that the two-state model

may be preferable.

To gain insight into the accuracy of the two-state model for cold-molecule experiments

on NO, we compare two-state Stark shifts to data measured with the Stark guide described

in Sec. IV. To facilitate use of the equations of the two-state model for radicals other

than NO we present “generic forms” that can be applied trivially to any diatomic with a 2Π

ground electronic state [for detailed information about these molecules, see the compilation

in Ref. 57]. While the venerable two-state model is not new to the quantum mechanics of

Stark effect [see, for example, Refs. 36, 47], to our knowledge no previous publication quan-

titatively assess the errors inherent in the linear and quadratic Stark shifts for field strengths

characteristic of current cold- and ultracold molecule experiments (around 100 kV/cm).

To define a physical context for discussion of our results and to establish notation we

begin in Sec. II by summarizing the relevant physics of zero-field states of NO. We also

present contemporary values of spectroscopic and other data needed to calculate zero-field

energies and Stark shifts for this molecule.

II. SUMMARY OF RELEVANT PROPERTIES OF NO

Molecules such as nitric oxide (NO) stand out among stable diatomic radicals in that

they have an odd number of electrons and a 2Π ground-state term. The latter corresponds

to quantum numbers S = 1/2 for the total electronic spin S and Λ = ±1 for the projection

of the total electronic orbital angular momentum on the internuclear axis R. In its ground

electronic state, NO is an open-shell, weakly polar radical whose dominant orbital config-

uration is 1σ2 2σ2 3σ2 4σ2 5σ2 1π4 2π. In this state, spin-orbit interactions yield a multiplet

with Ω ≡ Λ+Σ = ±1/2, ±3/2, where the quantum number Σ corresponds to the projection

of S on R. The spin-orbit multiplet is regular, the 2Π3/2 level lying above the 2Π1/2 level

[58, 59]. The quantitative effects of the spin-orbit interaction on the Born-Oppenheimer
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energies in the ground electronic state of NO are shown (to scale) in Fig. 1(a).

In NO, coupling of the electron spin to the internuclear axis is sufficiently strong that

for low-lying rotational states, this molecule is accurately described by Hund’s case (a)

[25, 31, 60, 61]. Strictly, this case is appropriate for values of the quantum number J ,

which corresponds to the total angular momentum excluding nuclear spin, such that

|Λ Av,Ω| ≫ 2JBv, where Av,Ω is the spin-orbit coupling constant [see Eq. (A1b)], and Bv is

the rotational constant for the vth vibrational state [62, 63]; for NO, Gallagher et al. [25]

give A0,1/2/B0 ≈ 75.

For any molecule in a rovibronic state with |Λ| > 0, the molecular energies (for fixed Λ,

Σ, Ω, v, J , and laboratory-frame projection quantum number MJ) are two-fold degenerate,

because the electronic Hamiltonian is invariant under reflection in a plane that contains the

internuclear axis. The rotational Hamiltonian, however, perturbs these electronic states,

shifting their energies and lifting this degeneracy. In NO the rotational Hamiltonian couples

the 2Π1/2,
2Π3/2, and 2Σ1/2 rovibronic states so that the actual ground state is a superposition

of these states [34, 64–66]. This coupling results in a splitting of each rotational level

(of a particular vibrational manifold) into two nearly degenerate levels with opposite total

parity. It also causes a breakdown of the Hund’s case (a) description [24, 61, 63–65]. The

rotational 2Π1/2 states of NO are more accurately described by case aβ, “an intermediate

case, slightly removed from Hund’s case (a)” [26]. The pure Hund’s case (a) description,

however, is accurate for the 2Π3/2 state, because of the comparatively small [28] influence of

the rotational Hamiltonian [see §8 of Ref. 67].

Due to mixture of ±Λ states, each 2(2J + 1)-fold degenerate rovibronic energy level

splits into two closely spaced (2J + 1)-fold degenerate sublevels. This Λ-doublet splitting

was first observed in NO in microwave measurements of pure rotational spectra by Burrus

and Gordy [24]. The resulting sublevels of the Λ doublet are most often labeled e and f

[68, 69]. The splitting between these sublevels due to the rotational Hamiltonian increases

with increasing J , accelerating the transition from Hund’s case (a) to (b) as J increases.

The Λ doublet splitting for the lowest rovibronic level of the 2Π1/2 state is shown (on an

expanded scale) in Fig. 1(b).

In analyses of pure rotational spectra [24–26, 28] or of weak-field Stark-effect measure-

ments of the dipole moment of NO [27, 29], one must take into account magnetic hyperfine

effects. Typical zero-field hyperfine splittings for NO [29] range from 0.0013–0.0027 cm−1.
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But this energy range corresponds to trap depths of a few µK, which is much lower than

the depth of current Stark traps for molecules [7]. Hence we shall neglect nuclear spin and

hyperfine coupling.
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FIG. 1: Zero-field rovibronic energies of N14O16 relative to a zero of energy at the lowest spin-

orbit level of the ground electronic term at the equilibrium internuclear separation Re. (a) The

11 lowest rotational energies for the v = 0 and v = 1 vibrational manifolds of the 2Π1/2 and 2Π3/2

fine-structure levels. (b) The energies of the Λ-doublet levels for the J = 1/2 states of the v = 0

manifold of the 2Π1/2 electronic state (on an expanded energy scale). Each level is labeled by its

degree of degeneracy (above the line) and by the appropriate state designations (below the line);

for the e and f states, see Eq. (A6b).

A. The zero-field molecular states and energies of NO

Definitions of the zero-field stationary states and energies of diatomic radicals of the class

to which NO belongs are given in Appendix A. This section gives the final equations we

used in the present analysis.

To calculate the Λ-doublet splitting one should use the e/f -symmetrized molecular func-

tions in Eq. (A6b) [23, 67, 76], since the L-uncoupling operator of Eq. (A8) does not mix e
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and f states. In an analysis of the Stark effect, these rotationless parity labels therefore

pertain to the zero-field states of the Λ doublet (see Sec. III). In NO the perturbing 2Σ1/2

state lies above the 2Π state [66]. Both the e and f levels are lowered by the L-uncoupling

operator, but not by the same amount; Geuzebroek et al. [78] have unambiguously veri-

fied by two experiments that, as illustrated in Fig. 1(b), the e state (which for the lowest

rotational state has total parity π = +1) lies below the f state ( π = −1).

The splitting between the energy levels of the Λ doublet,

∆ǫfe
v,J,Ω ≡ ǫf

v,J,Ω − ǫe
v,J,Ω > 0, (1a)

is given to second order in the L-uncoupling operator by [25, 67, 72, 77]

∆ǫfe
v,J,1/2 = pv(J + 1

2
), for 2Π1/2 (1b)

∆ǫfe
v,J,3/2 = qv(J

2 − 1
4
)(J + 3

2
), for 2Π3/2. (1c)

The constants pv and qv are defined in terms of the spin-orbit constant, the rotational

constants, and the separation in energy ∆EΣ,Π ≡ EΣ − EΠ > 0 between the X2Π term and

the higher-lying perturbing A2Σ1/2 term as [64, 65]

pv ≡ 4Av,3/2Bv

∆EΣ,Π
, for 2Π1/2 (2a)

qv ≡ 8B2
v

Av,3/2 ∆EΣ,Π
, for 2Π3/2. (2b)

These expressions assume that the shapes of the X2Π and A2Σ1/2 potential energy curves

are identical and hence that these states have the same vibrational wave functions, an

approximation that is valid for NO [70]. (For details concerning the effect of Λ doubling

on rotational states in the 2Π states, see Table III of Ref. [26].) Taking into account the

Λ-doublet splitting, the zero-field rovibronic energies are [see also Eq. (3.5) of Ref. 25]

ǫ
e/f
v,J,Ω = ǫv,J,Ω ± 1

2
∆ǫfe

v,J,Ω, (3)

where ǫv,J,Ω is the Born-Oppenheimer rovibronic energy (A9), ∆ǫfe
v,J,Ω is the Λ-doublet split-

ting of Eq. (1), and the + and − signs correspond to the f and e states, respectively.
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B. Molecular data for NO.

physical significance symbol value ( cm−1)
rotational constant at equilibrium Be(

2Π3/2) 1.72016
Be(

2Π1/2) 1.67195

centrifugal distortion constant De(
2Π3/2) 10.2 × 10−6

De(
2Π1/2) 5.36 × 10−6

rovibrational interaction constant αe(
2Π3/2) 0.0182

αe(
2Π1/2) 0.0171

harmonic angular frequency ωe(
2Π3/2) 1904.04

ωe(
2Π1/2) 1904.20

anharmonicity constant ωexe(
2Π3/2) 14.100

ωexe(
2Π1/2) 14.075

TABLE I: Molecular constants in cm−1 for the 2Π levels of N14O16. Data from Refs. [71, 77, 79, 80].

For variations in measured spectroscopic constants, see [81]. For further references, see footnotes

to the table on N14O16 in Huber and Herzberg [71].

The molecular constants required to evaluate the zero-field energies (A9) are identified

and their measured values given for NO in Tbl. I. In addition to these constants, one

requires values for the spin-orbit constants of Eq. (A1a). Hallin et al. [82] experimentally

determined the spin-orbit constants for low-lying vibrational states of the 2Π3/2 level; for

the ground and first vibrational states, they obtained A0,3/2 = 123.139 07(25) cm−1 and

A1,3/2 = 122.894 90(27) cm−1 [see Refs. 28, 59, 79, 83]. The corresponding equilibrium spin-

orbit constant for the ground electronic state is [71] A3/2(Re = 1.150 77 Å) = 119.82 cm−1.

The separation between the interacting 2Π and 2Σ1/2 Born-Oppenheimer electronic states is

[58] ∆EΣ,Π = 43 966 cm−1.

The constant pv in the Λ-doublet splitting energy (1) depends on the vibrational state.

One can experimentally determine this splitting from the frequency separation of Λ-doublet

spectral lines for rotational transitions J → J + 1. From analysis of high-resolution Fourier

spectra, Amiot et al. [84] [corrected in Tbl. III of Ref. 85] determined the values p0 =

0.011 6893(80) cm−1 and p1 = 0.011 6878(14) cm−1 [for related determinations see Refs. 24,

25, 28, 35, 85]. For the Λ-doublet parameters of the 2Π3/2 level, these authors obtained

q0 = 9.507(74) × 10−6 cm−1 and q1 = 9.443(68) × 10−6 cm−1. The resulting Λ-doublet

splittings are in good accord with the theoretical calculations of de Vivie and Peyerimhoff

[66], who discuss the theoretical underpinnings of this phenomenon and the wide variation
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in contemporary experimental values of qv [see also Refs. 29, 64, 65].

C. Dipole moments for NO.

To evaluate the Stark shifts, we require the vibrationally averaged dipole moments for

the v = 0 and v = 1 states of the spin-orbit state of interest. This quantity, the permanent

electric dipole moment in the vth vibrational state [69]

µv,Ω ≡ 〈α, v, S, Λ, Σ, Ω, J, MJ | µ | α, v, S, Λ, Σ, Ω, J, MJ〉 , (4)

depends on the magnitude but not on the sign of Ω. The permanent dipole moment for

the 2Π1/2 state of N14O16 has been measured, calculated, and discussed extensively; key

results appear in Tbl. II. The experimental results in this table come from microwave

spectra except the value of Neumann [86], which was determined using a molecular-beam

resonance technique. These measurements cannot determine the sign of µv,Ω. But the calcu-

lations of Billingsley [87], who used the optimized-valence-configuration multiconfiguration

self-consistent-field method, show the polarity of the ground state to be N−O+, i.e., the

dipole moment points from the nitrogen nucleus to the oxygen nucleus and therefore, by

definition, is negative. This finding explains the signs in Tbl. II. The more recent calcu-

lations of Refs. [88, 89] entail multireference singles-plus-doubles configuration-interaction

calculations. The values we use in the calculations of Sec. IV are those of Rawlins et al. [90].

These authors analyzed experimental data for vibrational-transition branching ratios, pre-

vious measurements of the static dipole moment, and absorption coefficients for transitions

from the ground to the first vibrational state. They then used a nonlinear least-squares fit

to determine a dipole moment function µΩ(R), from which they calculate the vibrationally

averaged moments in Tbl. II.

III. THEORY: THE STARK EFFECT FOR NO.

We here summarize the application of the two-state model and its perturbation-theory

approximates to NO. For a static, homogeneous external electric field of strength E that
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source µ0(D) µ1(D)
[E] Liu et al. [91] 0.1595(15) 0.1425(16)
[E] Burrus and Graybeal [27] 0.158 ± 0.006
[E] Neumann [86] 0.15782 ± 0.0002
[E] Hoy et al. [29] 0.1574 0.1416
[T] Billingsley[87] −0.139 −0.119
[T] Langhoff et al. [89] −0.169 −0.152
[E] Rawlins et al. [90] −0.1588 −0.1406

TABLE II: Experimental (E) and theoretical (T) values for vibrationally averaged dipole moments

in the ground and first-excited vibrational states in the 2Π spin-orbit states of N14O16. Values are

given in Debye, where 1 D = 3.33564 × 10−30 cm−1. Note that experimental measurements yield

only |µv,Ω|.

points along the laboratory-frame Z axis, The Stark Hamiltonian is

ĤE = −µ · E = −µE cos θ, (5)

where µ is the permanent dipole moment of the molecule, and θ is the polar angle of the

field axis with respect to the internuclear axis. We require the matrix of this Hamiltonian

in a basis defined by the two states of NO that are relevant to the experiments under

consideration.

Symmetry properties of the Stark Hamiltonian ĤE facilitate calculating its effect on the

zero-field NO energies. Since ĤE commutes with Ĵz, it doesn’t couple states of different |Ω|;
nor does it couple a state with +Ω to the corresponding state with −Ω. Therefore in the

rovibronic basis defined by Eq. (A2), whose elements we’ll here abbreviate as |Ω±〉, the

matrix representation of the Stark Hamiltonian is diagonal:

H
E
{ |Ω±〉 } =


〈Ω | ĤE | Ω〉 0

0 − 〈Ω | ĤE | Ω〉


 , (6a)

where we have exploited the symmetry of the molecule to relate the (non-zero) diagonal

elements [23]. But the Stark Hamiltonian does couple the e and f states defined in Eq. (A6b),

which we’ll here abbreviate by |e/f〉. In this basis the diagonal matrix elements of ĤE
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are zero, so the matrix representation is

H
E
{ |e/f〉 } =


 0 〈e | ĤE | f〉

〈e | ĤE | f〉 0


 , (6b)

where we have used the Hermiticity of ĤE to equate the (non-zero) off-diagonal elements.

The sole matrix element 〈Ω | ĤE | Ω〉 needed to construct the representation (6a) of ĤE

in the |Ω±〉 basis is [23]

HE
v,J,MJ ,Ω = 〈α, v, S, Λ, Σ, Ω, J, MJ | ĤE | α, v, S, Λ, Σ, Ω, J, MJ〉 (7a)

= −E µv,Ω 〈J, MJ , Ω | cos θ | J, MJ , Ω〉 , (7b)

where |J, MJ , Ω〉 is the rotational eigenstate in Eq. (A2) and µv,Ω is the vibrationally averaged

dipole moment defined in Eq. (4). Since the laboratory-frame polar angle θ is the direction

cosine αz
Z , the diagonal matrix element of this quantity with respect to the rotational state

|J, MJ , Ω〉 is the expectation value of αz
Z in this state, the value of which is [see §3.9 and

Table 3.2 of Ref. 68]

〈J, MJ , Ω | α | J, MJ , Ω〉 = 〈αz
Z〉 =

ΩMJ

J(J + 1)
. (8)

The Stark matrix element (7a) is therefore

HE
v,J,MJ ,Ω = −µv,ΩE ΩMJ

J(J + 1)
, MJ = −J, . . . , +J. (9)

A. The Stark effect in a two-state model

Although the zero-field Born-Oppenheimer states |α, v, S, Λ, Σ, Ω, J, MJ , e/f〉 are not

degenerate, the Λ-doublet splitting in NO is so small that these states are well-separated

in energy from all other rovibronic states [see Fig. 1(a)]. (This feature has been verified

experimentally by Gallagher and Johnson [26] and by Hoy et al. [29] [see also Refs. 22, 23].)

Moreover, applied fields in current cold molecular experiments are sufficiently strong that

the product µv,Ω E is much larger than the hyperfine splitting [92]—conditions that bring

into question the suitability of perturbation theory. Under these circumstances, we can
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determine the Stark energies by modeling the molecule as a two-state system [47, 93]. We

shall show in Sec. IV, such a nonperturbative approach is required for field strengths larger

than a few kV/cm, because second-order perturbation theory, which leads to the familiar

“quadratic Stark effect” [22, 29], is highly inaccurate for these field strengths.

We now define the two states in the present application of this model. The

states |α, v, S, Λ, Σ, Ω, J, MJ , e/f〉 of Eq. (A6b) for fixed v, J , Λ, Σ, and Ω constitute a

basis of 2(2J + 1) eigenvectors in which we can expand the desired eigenvector of the total

Hamiltonian Ĥ = Ĥ0 +ĤE [see Appendix A]. Since ĤE commutes with ĴZ , the Hamiltonian

matrix in this basis is block diagonal with respect to the magnetic quantum number MJ .

Hence we can consider each 2 × 2 submatrix for fixed MJ separately and obtain the eigen-

values of Ĥ by diagonalizing [110]

H{ |e/f〉 } =


Hee Hef

Hfe Hff


 =


 ǫe

v,J,Ω 〈e | ĤE | f〉
〈e | ĤE | f〉 ǫf

v,J,Ω


 , (10)

where the second equality follows from the symmetry properties of the e/f basis (Sec. III).

The diagonal elements in H{ |e/f〉 } are just the zero-field energies of the e and f states given

in Eq. (3). By Hermiticity of Ĥ the off-diagonal elements in this matrix are equal: Hfe =

Hef . By orthonormality of the e/f states, these elements are Hef = 〈e | Ĥ0 + ĤE | f〉 =

〈e | ĤE | f〉. To evaluate Hef we use Eq. (A6b) to express the off-diagonal matrix element

in terms of the { |Ω±〉 } basis states. According to Eq. (6a), the matrix H
E
{ |Ω±〉 } is diagonal.

So the matrix element simplifies to the one already evaluated in Eq. (9):

〈e | ĤE | f〉 = 〈Ω | ĤE | Ω〉 = HE
v,J,MJ ,Ω = −µv,ΩE ΩMJ

J(J + 1)
. (11)

Diagonalizing the matrix (10) yields the Stark energies in the two-state model,

E
e/f
v,J,MJ ,Ω = 1

2
(ǫe

v,J,Ω + ǫf
v,J,Ω)

± 1
2

√
4|HE

v,J,MJ ,Ω|2 + (∆ǫfe
v,J,Ω)2,

(12a)

where the + sign corresponds to the f state and the − sign to the e state. Noting

from Eq. (3) that the average of the e and f zero-field energies is just the rovibronic energy
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ǫv,J,Ω of Eq. (A9), and defining the two-state Stark shift

∆EE
v,J,MJ ,Ω = 1

2

√
4|HE

v,J,MJ ,Ω|2 + (∆ǫfe
v,J,Ω)2, (12b)

we can write Eq. (12a) as

E
e/f
v,J,MJ ,Ω = ǫv,J,Ω ± ∆EE

v,J,MJ ,Ω. (12c)

This form emphasizes that Eq. (12b) gives the Stark shifts to the zero-field Born-

Oppenheimer rovibronic energies ǫv,J,Ω of Eq. (A9), not to the e/f energies ǫ
e/f
v,J,Ω of Eq. (3).

Equations (12) show that the Stark effect increases the energies of the upper (f) levels

[see Fig. 1(b)] and decreases the energies of the lower (e) levels [92]. These shifts depend on

the magnitude but not on the sign of MJ : that is, the Stark-shifted levels remain two-fold

degenerate. To calculate these shifts we require only the field strength and the (averaged)

dipole moments in the relevant vibronic states [see Sec. II C].

B. Perturbation theory regained: the strong- and weak-field limits

Burrus and Graybeal [27] used Stark spectroscopy to measure the dipole moment for the

v = 0 vibrational state of the 2Π1/2 level of N14O16. Subsequently, Hoy et al. [29] used laser

Stark spectroscopy to measure µv,Ω for the ground and first vibrational states and considered

both 2Π levels. As befits such microwave-spectroscopy experiments, these authors focused

on the weak-field limit, included hyperfine splitting, used perturbation theory [22, 23] to

calculate the quadratic (second-order) and linear (first-order) Stark shifts. We here give

the equations of perturbation theory for NO as approximations to those of the two-state

model.[111]

To relate the two-state results of Sec. III A to their perturbation-theory approximates,

we write the Stark energy levels of Eqs. (12) as

E
e/f
v,J,MJ ,Ω = ǫ

e/f
v,J,Ω ± (∆EE

v,J,MJ ,Ω − 1
2
∆ǫfe

v,J,Ω). (13)

In the presence of Λ doubling, second-order perturbation theory is valid only if the external

electric field is sufficiently weak. In this weak-field limit the two-state Stark shift reduces to

the familiar quadratic shift. Writing Eq. (13) as
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E
e/f
v,J,MJ ,Ω = ǫ

e/f
v,J,Ω ± 1

2
∆ǫfe

v,J,Ω




√√√√1 + 4

(
HE

v,J,MJ ,Ω

∆ǫfe
v,J,Ω

)2

− 1


 , (14a)

we expand the square root in the small parameter |HE
v,J,MJ ,Ω/∆ǫfe

v,J,Ω| and retain only the

first term to obtain

E
e/f
v,J,MJ ,Ω ≈ ǫ

e/f
v,J,Ω ± E

(2)
v,J,MJ ,Ω, (14b)

where the + and − signs refer to the f and e states, respectively and we have identified the

second-order correction term as the quadratic Stark shift to the zero-field e/f energies:

E
(2)
v,J,MJ ,Ω =

[HE
v,J,MJ ,Ω(E)]2

∆ǫfe
v,J,Ω

. (15)

For the second-order approximation to the Stark shift to be accurate, the applied field must

be weak enough that

|HE
v,J,MJ ,Ω(E)| ≪ 1

2
∆ǫfe

v,J,Ω. (16)

In the other extreme—the strong-field limit, where the field is strong enough to render

the Λ-doublet splitting negligible—Eq. (12c) reduces to

E
e/f
v,J,MJ ,Ω = ǫ

e/f
v,J,Ω ± HE

v,J,MJ ,Ω = ǫ
e/f
v,J,Ω ∓ µv,ΩE ΩMJ

J(J + 1)
. (17)

The second term in this result agrees with the first-order (linear) Stark shift [22],

E
(1)
v,J,MJ ,Ω = 〈Ω | ĤE | Ω〉 = −µv,ΩE ΩMJ

J(J + 1)
, (18)

which one obtains by neglecting the Λ doublet splitting altogether [29].

To conclude we write our equations for the Stark shifts in a form that is convenient for

application to other molecules and for the comparisons of Sec. IV. To this end we introduce

the dimensionless variable

η ≡
HE

v,J,MJ ,Ω

∆ǫfe
v,J,Ω

, (19)

which is the Stark matrix element for an arbitrary rovibronic state normalized to the split-

ting of the Λ doublet. In terms of this variable, Eqs. (12b), (15), and (18) for the Stark
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shifts become

∆EE
v,J,MJ ,Ω = ±

√
1
4

+ η2, (20a)

E
(2)
v,J,MJ ,Ω = ±

(
1
2

+ η2
)
, (20b)

E
(1)
v,J,MJ ,Ω = ±

(
1
2

+ η
)
, (20c)

where the + and − signs refer to the f and e states, respectively. Note that because η is

defined in terms of the matrix element HE
v,J,MJ ,Ω, this variable depends on the field strength

and on the rovibronic state under consideration. Equations (20) are “generic” expressions

for the Stark shifts, applicable to any molecule with a 2Π ground state under conditions

where hyperfine effects are negligible.

C. Assessing perturbative treatments of the Stark effect

In the preceding section, we described three ways to calculate Stark shifts for any molecule

with |Λ| > 0 that is well represented by Hund’s case (a) under conditions where hyperfine

structure is negligible. Three points are relevant to these comparisons:

• The linear Stark shift [Eq. (14b)] results from first-order perturbation theory; this

result is valid only when the Stark interaction energy is large compared to the Λ-

doublet splitting.

• The quadratic Stark shift [Eq. (15)] results from second-order perturbation theory and

assumes that the Stark energy is small compared to the Λ-doublet splitting. When

this approximation holds, the first-order Stark shift is zero.

• The two-state model diagonalizes the Hamiltonian, assuming only that the Λ-doublet

splitting and Stark interaction energies are small compared to the separation of the

rovibronic level under consideration from other levels.

In Fig. 2(a), we plot the Stark shifts for the ground rovibronic state (v = 0, J = 1/2) of the

2Π1/2 spin-orbit level as a function of field strength. This figure shows significant differences

between the quadratic Stark shift and that of the two-state theory—even for relatively low

electric fields. According to perturbation theory, the second-order correction lowers the

energies of e states and raises the energies of f states. Qualitatively this behavior is the

same as that of the two-state Stark shifts. Quantitatively, however, the condition (16) breaks
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FIG. 2: (a) The dc Stark shifts for the v = 0, J = 1/2 state of the 2Π1/2 spin-orbit level as a

function of electric field strength. Shifts in the two-state model and in first- and second-order

perturbation theory are shown over an experimentally realistic range of field strengths. (b) The

fractional difference between Stark shifts, as calculated using perturbation theory and using the

two-state model [see Eqs. (20)], for a rovibronic state of a Hund’s case (a) molecule. First- and

second-order perturbation theory give the linear and quadratic approximations, respectively. The

parameter η, the Stark matrix element normalized to the Λ-doublet splitting, is defined in Eq. (19).

down at field strengths above a few kV/cm. (The linear approximation is not expected to be

accurate at low field strengths; it is valid only for Stark shifts greater than the Λ-doublet

splitting.) To quantify the implications of Fig. 2(a), we compare in Tbl. III Stark shifts for

the f state from the (very low) field strengths at which the quadratic shift is accurate to

the (very high) strength at which the linear approximation holds.

16



In Fig. 2(b), we compare the fractional difference between the linear and quadratic Stark

shifts of Eqs. (20) to those of the two-state model. Since the dimensionless variable η

of Eq. (19) depends on the dipole moment, electric field, and quantum state, these curves

show the relative accuracy of perturbation theory for any rovibronic state of any radical that

can be treated in Hund’s case (a) when hyperfine effects are negligible. Especially noteworthy

is the striking, rapid increase in the error of the quadratic Stark shift around η = 1.

To illustrate the behavior of Stark shifts over the range of field strength that is experi-

mentally accessible for electrostatic trapping, we show in Fig. 3 results from the two-state

model for the J = 1/2 and J = 3/2 rotational levels of the 2Π1/2 state and for the J = 3/2

and J = 5/2 levels of the 2Π3/2 state. In both cases we consider the ground vibrational

manifold (v = 0). Since the Stark energies depend on the magnitude but not the sign of

MJ , each Stark-shifted level remains two-fold degenerate. Because the Λ-doublet splitting

is so small for 2Π3/2 states, the Stark shift for these states is essentially linear over the entire

range of field strengths of interest. For the J = 3/2 state of the 2Π1/2 level, the Stark energy

at 40 kV/cm is more than half of the energy of the Λ doublet, and Fig. 2(b) shows that

as the field strength increases, second-order perturbation theory rapidly and significantly

breaks down. Indeed, for the J = 1/2 rotational state of this level, this approximation is

invalid for most relevant trapping fields.

E( kV/cm) two-state quadratic linear
0.5 0.00002 0.00002 0.00044
2.0 0.00026 0.00027 0.00178
5.0 0.00150 0.00169 0.00444

10.0 0.00479 0.00676 0.00889
20.0 0.01287 0.02704 0.01778
50.0 0.03898 0.16897 0.04444

100.0 0.08323 0.67589 0.08889
300.0 0.26088 6.08300 0.26666
500.0 0.43862 16.8970 0.44443

1000.0 0.88303 67.5890 0.88886

TABLE III: Comparison of two-state, quadratic, and linear Stark shifts in cm−1 for the v = 0,

J = 1/2, MJ = 1/2 zero-field energy of the e state of the 2Π1/2 level in NO as a function of electric

field strength E in kV/cm. The “linear” column gives the Stark shift (18) obtained by neglecting

the splitting of the Λ doublet compared to the Stark matrix element (9). Field strengths were

chosen to illustrate the breakdown of the linear and quadratic approximations.
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FIG. 3: The dc Stark shifts for the two lowest rotational levels of the ground vibrational manifold

of the Ω = 1/2 and Ω = 3/2 states of N14O16 as a function of the strength of the applied electric

field. In each case, the states whose energies increase with increasing field strength correspond to

the zero-field f level of the Λ doublet. Those whose energies decrease with field strength correspond

to the zero-field e level. The zero of energy is at the mid-point of the Λ doublet. (The Λ-doublet

splitting for the Ω = 3/2 state is not visible on the scale of this figure.)

IV. EXPERIMENT: PRODUCING COLD NO MOLECULES WITH A STARK

GUIDE

One way to produce cold samples of atoms and molecules is to select the cold fraction

(T . 1 K) of molecules in the Maxwell-Boltzmann speed distribution that emerges from

a thermal source. In this approach an atomic or molecular beam is directed into a two-

dimensional guide that is bent at an angle such that there is no line-of-sight between the

input and output ends of the guide. This guide transmits only particles that move slowly

enough to be repelled from the walls by magnetic or electric fields and guided. The feasibility

of this method has been demonstrated for Li [95], Rb [96], and H2CO and ND3 [97].

In our experimental study of the feasibility of using such a device to produce cold NO we
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FIG. 4: (a) Schematic of the experimental apparatus (not to scale). (b) Cross section of the

hexapole guide. The central circle defines the highest edge of the two-dimensional guide potential.

On this central circle the cross and small open circle indicate points of lowest and highest guide

potential, respectively, along the edge of the guide.

inject NO molecules from an effusive source at 77 K into a straight hexapole Stark guide.

As illustrated in Fig. 4a, in this apparatus there does exist a line-of-sight between the input

and the output. The hexapole guide, a cross section of which is shown in Fig. 4b, consists

of six wires, with positive and negative voltages placed on alternating wires, and produces
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electric fields as high as 65 kV/cm. Although our objectives are different, our NO guide

is functionally identical to the hexapole NO guide used by Stolte and coworkers [98, 99].

The primary difference is that we use a 77 K effusive source, while Stolte and coworkers use

a molecular-beam source. The electric field inside the guide is not azimuthally symmetric.

Along the circle that defines the highest edge values of the guide potential, the potential

energy attains a minimum at each wire and a maximum halfway between each wire (Fig. 4b).

Calculating the electric field inside the guide, we find that the easiest escape route for the

particles corresponds to a field strength of 35 kV/cm at a guide voltage of 4.5 kV.

Particles whose trajectories are not along a line-of-sight to the output will be guided

to the output if their transverse kinetic energy is smaller than the energy of their Stark

interaction with the electric field. Due to this collimation effect, the number of molecules at

the output will be enhanced. Because the Stark interaction energy is small compared to the

average thermal energy of the beam, only the cold fraction is collimated. Further details of

the apparatus are described in Ref. [100].

In the present experiments, we observe enhancement of the number of molecules in the

lowest rovibrational state of N14O16. The particles are detected by exciting the transi-

tion |X2Π1/2, v = 0, J = 1/2〉 → |A2Σ1/2, v = 0, J = 3/2, N = 2〉 at 226.180 nm [101]. The

excited A state is then ionized with 327 nm laser radiation, and the resulting cations are

detected on a microchannel plate. Because of drifts in laser intensity and flux from the

source, constant normalization of the detected signal is necessary. To measure the effect of

the guide on the molecular beam, the number of particles in the |2Π1/2, v = 0, J = 1/2〉 state

is measured as the guide voltage is increased from 0 to 4.5 kV.

We now present data for the enhancement of NO molecules due to passage through the

Stark guide. Since this enhancement depends on the Stark interaction, we can use the

variation of this quantity with guide voltage to assess the theoretical treatment in Sec. III in

the context of experiments on cold molecules. Figure 5 shows the number of ions detected

by the microchannel plate. Because fluctuations in the number of detected molecules were

smallest at the highest count rates, we normalized the data in this figure to the number of

ions detected with maximum voltage applied to the Stark guide, V = 4.5 kV.

In each measurement we count the number of ions collected during 320 laser pulses with

a particular voltage on the guide, and divide the result by the corresponding number of ions

for a voltage of 4.5 kV. In order to determine the statistical error we take ten consecutive
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measurements of this type. We then repeat this process on several days, adjusting the

alignment of the ionizing lasers and the input pressure of NO in order to evaluate systematic

errors in the apparatus. The data are subject to a systematic error that is comparable in

magnitude to the statistical uncertainty, which we determine by comparing data taken with

different configurations. We add the systematic error (in quadrature) to the statistical error

to determine the error bars in Fig. 5a, which correspond to a 2-σ confidence interval.
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FIG. 5: The number of detected of particles leaving the guide in the J = 1/2 ground rovibrational

state as a function of guide voltage. Comparison of results from the two-state model of Sec. III to

measured data. The flux is normalized to the flux at the maximum voltage, 4.5 kV, and the data

is compared to normalized fluxes calculated using two-state equations for the Stark shift. Note the

discussion in the text of the effects of the normalization procedure used in generating this figure.

We model the electric field E(r) using the numerical software program SIMION [102]
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including in the model file the conducting surfaces of the source can, the source tube, the

guide, and the detection plates. Motion of particles in the guide is calculated by finding

the force on the particles, F = −∇U(r), where the potential energy U(r) is given by the

Stark shift ∆EE
v,J,MJ ,Ω of Eq. (12b) as determined using the two-state model of Sec. III A.

[The dependence on r enters the Stark shift through the r-dependent electric field strength,

which appears in the matrix element of Eq. (11).] Only molecules in states whose energy

energy increases with increasing electric field (so-called “low-field seeking states”) are guided.

From the potential energy U(r) for our system we create an equivalent electric field for

ion propagation in an identical geometry. The SIMION program calculates Monte-Carlo

trajectories of ions in arbitrary electric fields. So once we have found U(r) for our system,

we create an equivalent electric field for ion propagation. Thus, the SIMION ion-trajectory

simulator calculates our neutral particle trajectories.

In simulating the output of the guide, we assume that the source provides an isotropic an-

gular distribution, although we considered only particles whose trajectories permitted them

to enter the guide. In a previous measurement, we determined that the speed distribution

is proportional to v2e−αv2

(where α is constant) as in a standard one-dimensional Maxwell-

Boltzmann distribution. The expected speed distribution for the flux from an effusive source

is proportional to v3 [100]. The time during which laser radiation is on, however, is small

compared to that required for the particles to undergo any significant movement. Therefore

we measure the density directly. Assuming this speed distribution, we found the tempera-

ture of the gas to be 77 K, in agreement with a thermistor measurement of the temperature

of the source tube. For each voltage on the guide we simulated 20,000 trajectories and

counted the number of particles that were successfully guided into the detection region. The

result of each simulation at each voltage was divided by the corresponding value for 4.5 kV;

as noted above, this step normalizes the data. Thus, no fitting parameters were involved in

generating the comparison in Fig. 5.

The error bars for both the experiment and the Monte-Carlo simulations represent a 2-σ

confidence interval. As Fig. 5 shows, the two-state model and the data disagree significantly

only for a guide voltage of 0 kV. This disagreement may result from incomplete modeling

of fringing fields at the input. At the input of the guide, a dialectric piece holds the wires

in place. This piece will modify the fields at the entrance—an effect that cannot be easily

simulated in SIMION. Note that this effect is present in all data, since these data are
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normalized to the output at 4.5 kV. Since improperly modeling the input fields will similarly

affect data simulated at different voltages, the largest such effect will appear in data at 0 kV.

Another possibility is a background signal in the data that would have the largest effect on

the small signal comparison at 0 kV. We conclude that the results from the two-state model

are consistent with the measured data over the range of voltages considered.

V. CONCLUSIONS

In previous literature concerning NO, the Stark effect for 2Π3/2 states has been often

described as “linear” and that for 2Π1/2 states as “quadratic.” Each of these characterizations

implies a particular perturbative model. We have demonstrated the extent to which for field

strengths which are relevant to trapping cold NO these characterizations and the assumptions

inherent in them are unsuitable.

The Stark shifts of perturbation theory [Sec. III B] are mathematical approximations

(in the strong- and weak-field limits) to the Stark shifts of the non-perturbative two-state

model of Sec. III A. The numerical comparisons of Sec. III C quantify the validity of these

approximation for NO molecules at field strengths from 0 to 15 kV/ cm and show the

magnitude of the error that perturbative approximations introduce into calculated Stark

shifts.

The experimental aspect of this work considers the validity of the two-state model itself.

The relative isolation of the states of interest in the present work on NO from other states

of the molecule, and the small magnitude of (neglected) hyperfine interactions give reason

for optimism. The experimental data reported in Sec. IV and the simulations in Fig. 5 show

that for NO in its ground state, the two-state model is accurate for applied electric field

strengths on the order of 100 kV/cm. In Figs. 2 and 3 these equations are applied to the

class of radicals to which NO belongs. [112]

Because the two-state model is not significantly more complicated and does not break

down in the relevant range of experimental fields, we recommend that the two-state model be

used except where compelling reasons argue for the perturbation-theory alternative [see, for

example, [37]], and that extreme care be exercised if the further simplification of perturbation

theory is desired.

We hope that these quantitative assessments along with our two-state equations for the
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Stark shifts, used in conjunction with Eqs. (A9) for the rovibronic energies (including spin-

orbit and spin-uncoupling effects) and Eqs. (1) for the splitting of the Λ doublet, will con-

stitute a reliable resource for cold-molecule experiments involving 2Π molecules with an odd

number of electrons.

Appendix

APPENDIX A: ZERO-FIELD MOLECULAR STATES AND ENERGIES OF NO

We denote eigenvectors of the Born-Oppenheimer electronic Hamiltonian Ĥe

by |α, S, Λ, Σ, Ω, J〉, where the (signed) quantum numbers Λ, Σ, and Ω refer to projections

along the internuclear axis, the z axis of the molecular (body-fixed) coordinate system. The

quantum number S, correspond to total electronic spin, and α denotes the electronic energy

(e.g., X, A, a, etc.). For NO, which essentially belongs to Hund’s case (a), the quantum

number Ω ≡ Λ+Σ is redundant. It’s useful, though, to include Ω as a state label because Ω

identifies the sub-levels that result from the spin-orbit interaction.

Absent spin-orbit interactions, the Born-Oppenheimer electronic energy E
(BO)
Λ,Σ (R), the

eigenvalue of Ĥe for electronic state |α, S, Λ, Σ, Ω, J〉, depends on the spin multiplicity 2S + 1

and on the magnitude—but not the sign—of Λ. For an arbitrary angular momentum cou-

pling scheme, adding the spin-orbit Hamiltonian to Ĥe results in states in which neither Λ

nor Σ are rigorously good quantum numbers. Since the sum Λ + Σ is a constant of the

motion, spin-orbit states are labeled by Ω. In the Hund’s case (a) idealization, however, Σ

and Λ remain good quantum numbers and are used as state labels [61, 63, 68]. For a 2Π

state, the allowed values of Ω are ±1/2 and ±3/2, but the spin-orbit energies depend only

on the magnitude of Ω.

Neglecting second-order corrections [see §2.4.1 of Ref. 70], the spin-orbit shifts to E
(BO)
Λ,Σ (R)

are the diagonal matrix elements of the spin-orbit Hamiltonian in the basis of Born-

Oppenheimer electronic states. The first-order shift, written in terms of the spin-orbit

coupling constant AΩ(R), is

AΩ(R) Λ Σ = 〈α, S, Λ, Σ, Ω, J | ĤSO | α, S, Λ, Σ, Ω, J〉 . (A1a)

The resulting fine-structure levels are equally spaced about the Born-Oppenheimer elec-

tronic energy. Following Huber and Herzberg [71], we choose the zero of energy at the
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lowest spin-orbit level of the ground electronic term at equilibrium internuclear separa-

tion Re. Thus A1/2(Re) = 0, and the energy of the upper spin-orbit level is A3/2(Re) > 0.

When we include rovibrational motion, we measure spin-orbit level energies from the ground

rovibrational state, so A0,1/2 = 0.

Since the molecule vibrates, the actual spin-orbit constant is the average of AΩ(R) over

a vibrational state of the molecule,

Av,Ω = 〈v | AΩ(R) | v〉R = AΩ(Re) − χe(v + 1
2
), (A1b)

where the spectroscopic constant χe corrects the equilibrium spin-orbit coupling con-

stant AΩ(Re) to allow for vibrational motion, and the subscript R signifies integration over

the internuclear separation.

For a Hund’s case (a) molecule the Born-Oppenheimer rovibronic states are represented

by the direct products [72]

|α, v, S, Λ, Σ, Ω, J, MJ〉 = |α, S, Λ, Σ, Ω, J〉

⊗ |v J〉 ⊗ |J, MJ , Ω〉 .
(A2)

Here the vibrational state is denoted |v, J〉. The quantum number J corresponds to the

angular momentum operator (sans nuclear spin), i.e., the sum of the total electronic angular

momentum and the rotational angular momentum of the molecule N [113]:

Ĵ ≡ L̂ + Ŝ + N̂. (A3)

The (symmetric top) rotational state |J, MJ , Ω〉 is an eigenvector of Ĵ2, ĴZ , and Ĵz [see §1.3.3

of Ref. 70], where the subscripts Z and z refer to the polar axis of the (space-fixed) laboratory

frame and the (body-fixed) molecular frame, respectively. Since rotation takes place in

the plane of the internuclear axis, N is perpendicular to this axis. Hence the projection

of N along the internuclear axis is zero, and the quantum number that corresponds to Jz

is Ω = Λ+Σ. The ket |α, S, Λ, Σ, Ω, J〉 is an eigenvector of the Born-Oppenheimer electronic

Hamiltonian and that part of the rotational Hamiltonian [Eq. (A7b) below] whose matrix
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elements are diagonal [70],

Ĥrot
diag(R) ≡ 1

2µR2

[(
Ĵ2 − Ĵ2

z

)
+
(
L̂2 − L̂2

z

)
−
(
Ŝ2 − Ŝ2

z

)]
. (A4)

Because of the isotropy of free space, properly symmetrized eigenfunctions of the molec-

ular Hamiltonian have well-defined total parity. In Born-Oppenheimer theory, these parity

eigenfunctions are linear combinations of degenerate rovibronic stationary-state wave func-

tions that have positive and negative projection quantum numbers Ω (for fixed Ω 6= 0).

These linear combinations are eigenfunctions of the vertical reflection operator σ̂v(xz),

where xz signifies a plane containing the internuclear axis (the z axis of the molecular

reference frame) [see Chap. 9 of Ref. 69]. The operator σ̂v(xz) inverts internal coordinates

through the origin [60]. When σ̂v(xz) acts on a rovibronic state |α, v, S, Λ, Σ, Ω, J, MJ〉, the

resulting eigenvalues π = ±1 define the total parity of the state [114]. At first glance, it

would seem easy to construct properly symmetrized rovibrational states by simply adding or

subtracting states |α, v, S, Λ, Σ, Ω, J, MJ〉 with positive and negative values of the angular-

momentum projection quantum numbers:

|v, |Λ|, |Σ|, J, MJ , |Ω|, π〉 1√
2

(
|α, v, S, Λ, Σ, Ω, J, MJ〉

± |α, v, S, −Λ, −Σ, −Ω, J, MJ〉
) (A5)

The problem is that it’s not necessarily the case that the + sign on the right-hand side of

this linear combination corresponds to even parity (π = +1) and the − sign corresponds to

odd parity. Rather, the total parity of a group of energy levels, such as the upper and lower

states of the Λ doublet, alternate with increasing J . In this alternation lies the usefulness

of the e/f symmetry classification scheme: in this scheme the signifiers, such as π(−1)J−1/2

for a molecule with an odd number of electrons, factor out this J-dependence and so are

independent of the rotational state of the molecule [63]. The values of these signifiers are

therefore referred to as the rotationless parity of the rovibronic state [115]. The e/f clas-

sification scheme of a rovibronic state gives no more information than the total-parity (π)

scheme, but because the e/f scheme is “rotationless,” it’s much more convenient [116].

Except for molecules with an even number of electrons in an electronic state in which Λ =

Ω = 0, construction of the e/f rovibronic eigenvectors proceeds in a straightforward manner
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depending on whether the molecule has an even or odd number of electrons. For a molecule

such as NO that has an odd number of electrons in an electronic state with |Λ| > 0, the

properly symmetrized rovibronic states wave functions have the form [72–75]

|α, v, S, Λ, Σ, Ω, J, MJ , e/f〉 =

1√
2

[
|α, v, S, Λ, Σ, Ω, J, MJ〉

± (−1)S+1 |α, v, S, −Λ, −Σ, −Ω, J, MJ〉
]
, (A6a)

where the + sign yields an e state, and − yields an f state. For NO in a 2Π state S = 1/2,

so the e/f rovibronic states are

|α, v, S, Λ, Σ, Ω, J, MJ , e/f〉 =
1√
2

(
|α, v, S, Λ, Σ, Ω, J, MJ〉

± |α, v, S, −Λ, −Σ, −Ω, J, MJ〉
)
.

(A6b)

The rotational Hamiltonian lifts the degeneracy of the states (A6b).

In addition to the spin-orbit operator, electronic and rotational terms in the nonrelativis-

tic molecular Hamiltonian can mix the Born-Oppenheimer states of Eq. (A2) and change

the corresponding energies [68, 70]. For the states and processes of interest here, these

corrections are negligible except for those due to terms in the rotational Hamiltonian that

induce the Λ-doublet splitting. The rotational Hamiltonian is

Ĥrot =
1

2µR2
N̂2, (A7a)

where µ is the reduced mass of the molecule. With the definition (A3) this Hamiltonian

assumes the form [70]

Ĥrot = Ĥrot
diag + +ĤSE + ĤSun + ĤLun, (A7b)

where the part of Ĥrot that is diagonal in the Hund’s (a) basis is given by Eq. (A4). The op-

erator Ĥrot
diag does not couple different electronic states; its expectation value is just the rota-

tional contribution to the energy of the state |α, v, S, Λ, Σ, Ω, J, MJ〉. Of the other terms, ĤSE

is the spin-electronic term, which mixes states of the same Ω and S but different Λ and Σ,

and ĤSun is the spin-uncoupling term, which mixes states with different |Ω| that have the
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same Λ and S but different Σ [see §7 of Ref. 67]; this term contributes to the rotational

energy [vide infra Eq. (A9) below] but does not split the Λ doublet. The third term, the

L-uncoupling operator

ĤLun = − 1

2µR2
(J+L− + J−L+), (A8)

mixes different rovibronic states with the same Σ and S but different Λ and hence different Ω.

Since ĤLun couples states with ∆Λ = ±1, ∆Σ = 0, and ∆Ω = ±1, this operator is responsible

for splitting the Λ doublet.

In the Hund’s case (a) basis { | α, v, S, Λ, Σ, Ω, J, MJ〉 }, the Born-Oppenheimer rovibra-

tional energy measured from E = 0 at the ground rovibrational state of the lowest spin-orbit

level is [25, 28, 58, 76, 77]

ǫv,J,Ω = Av,Ω + ωe(v + 1
2
) − ωexe(v + 1

2
)2

+ Bv

[
(J + 1

2
)2 − Λ2

]
− DvJ

2(J + 1)2

±
[
B2

v(J + 1
2
)2 + 1

4
Λ2Av,Ω(Av,Ω − 4Bv)

]1/2
.

(A9)

The first line of this equation is the sum of the spin-orbit coupling constant Av,Ω [vide in-

fra Eq. (A1a)] and the vibrational energy, which contains the harmonic and anharmonic

frequencies ωe and ωexe, respectively. The second and third lines of (A9) give the rota-

tional energy. [Note that the rotational energy includes the displacement due to the spin-

uncoupling operator in the rotational Hamiltonian (A7b).] For a regular spin-orbit multiplet

(e.g., in NO) the + and − signs in the rotational energy correspond to |Ω| = 3/2 and 1/2,

respectively. (Gallagher et al. [25] give a useful form of the rotational energy that is applica-

ble if spin uncoupling is weak.) In the rotational energy, the rotational constants Bv and Dv,

corrected to incorporate the rotation-vibration interaction in vibrational state v, are [77]

Bv ≡ Be − αe(v + 1
2
) (A10a)

Dv ≡ De + βe(v + 1
2
), (A10b)

where Be and De are the equilibrium rotational and centrifugal distortion constants, and αe

and βe are vibration-rotation interaction constants.
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[110] The actual basis states for this calculation should be the e/f eigenstates. Strictly, these

states are perturbed by the L-uncoupling operator and so are not actually simple linear

combinations of the |Ω±〉 states as in Eqs. (A6b) and (A6b). But the off-diagonal matrix

elements of the L-uncoupling operator are so small compared to the splitting ∆ǫfe
v,J,Ω between

the e and f states that we can neglect the first-order corrections to the perturbed e and f

eigenfunctions and use the zero-field states of Eqs. (A6b) [see p. 127 of Ref. 70].

[111] Other authors have considered the quadratic Stark effect for NO taking into account hyperfine

structure [22, 29]. Current experiments with cold molecules produce trapped samples at

temperatures on the order of 0.1–1 K [7, 94]. At these temperatures, the hyperfine splitting in

NO is negligible. While introducing hyperfine interactions will be important for experiments

that further cool (through evaporative or sympathetic cooling) trapped samples to energies

on the size of the hyperfine splittings, this additional complexity is at present unnecessary.

[112] We have found that two previous calculations of Stark shifts are in error. Mizushima [22]

presents linear Stark shifts for the J = 1/2, MJ = 1/2 and J = 3/2, MJ = 1/2, 3/2 states.

We find his results to be an order of magnitude too large. In addition, Hoy et al. [29]

presents a graph of the J = 3/2 and J = 5/2 rovibrational levels for these two spin-orbit

states for field strengths up to 50 kV/cm based on the linear and quadratic perturbation

approximations, respectively. For the 2Π3/2 state, we find that their graphical results is too

large by approximately a factor of two.

[113] Diverse symbols for this quantity proliferate through the literature, including , N, R, and

J. We have chosen N because it’s the only one of the commonly used symbols that doesn’t

represent another physical observable.

[114] The operator σ̂v(xz) acts on electronic coordinates in the molecular reference frame. But the

conventional definition of the total-parity operator, which is denoted by Ê∗, is the operator

that inverts electronic (and nuclear) coordinates in a space-fixed (“laboratory”) coordinate

system. Hougen [107] showed that the effect of σ̂v(xz) on a rovibronic wave function in the

molecular frame is equivalent to the action of Ê∗ in the laboratory frame. Because electronic

wave functions are calculated in the molecular frame, discussions of the parity of molecular

wave functions are couched in terms of σ̂v(xz) rather than Ê∗.

[115] In earlier literature on Λ doubling [see, for example, Refs. 64, 65], these states were denoted

c and d. In this notation, the |d〉 state of a particular rotational (J) state of a particular
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spin-orbit electronic state of NO lies above the |c〉 state. The symmetry properties of these

states have been analyzed by Alexander and Dagdigian [75] and an alternative proposed

notation in Alexander et al. [60]. In their notation, the Λ-doublet states of the 2Π1/2 level are

denoted Π(A′) and Π(A′′), respectively; these designations are reversed for the 2Π3/2 level.

[116] Note that electric dipole transitions in NO are governed by the selection rules e ↔ f for the

Q branch and e ↔ e and f ↔ f for the P and R branches.
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