
Mathematica Tips, Tricks, and Techniques

Syntax

Michael A. Morrison

(Version 3.4: February 2, 2000)

Applying computer technology is just a matter of finding
the right wrench to pound in the correct screw.
—Anonymous

Contents

1 Basic Syntax: What Everyone Should Know from the Outset. (Beginners) 3
1.1 What are the three most common syntax errors—and how can I avoid them? 3
1.2 What are the five most important aspects of Mathematica syntax? 3
1.3 I want a summary of the ways Mathematica uses parentheses, brackets, braces, etc. 3
1.4 What do I absolutely have to know about command names? 4
1.5 How can I exploit Mathematica’s naming convention to distinguish my commands from its

commands? . 4
1.6 Mathematica pretends not to know the name of a built-in command I just told it to execute.

What’s wrong? . 4

2 How Mathematica Syntax differs from Mathematics Syntax. (Everybody) 4
2.1 What’s a sure-fire safe way to avoid conflicts when I define a new function? 4
2.2 How do I specify negation in an equation? . 4
2.3 How do I raise a quantity to a power? . 4
2.4 I keep telling Mathematica a number is complex, but it persists in treating it as real. What’s

wrong? . 5
2.5 Mathematica isn’t treating my equations properly. What’s wrong? 5
2.6 What’s the correct syntax for a matrix? . 5

3 Finer Points of Mathematica Syntax. (Intermediate) 5
3.1 How can I make sense out of the myriad equation solving commands Mathematica offers? . . 5
3.2 The output from my equation solving commands looks useless. How do I extract the actual

answer from this output? . 5
3.3 When should I use the special Mathematica syntax to refer to the output from a command I

recently executed? . 5
3.4 How do I enter text (e.g., file names, comments) in Mathematica? 6
3.5 Mathematica won’t load a package I know it has access to! Am I incorrectly using Needs? . . 6
3.6 Mathematica isn’t evaluating pieces of my expression in the right order. How can I control

the evaluation order? . 6

4 Special Syntax for Functions and Assignments. (Intermediate) 6
4.1 How can I restrict my function to selected argument ranges? 6
4.2 What’s the difference between immediate and delayed assignments in function definitions? . . 7
4.3 What is Mathematica’s syntax for denoting arguments to functions? 7
4.4 I want to make a one-shot replacement in an expression? Do I have to define a function? . . . 7
4.5 I told Mathematica to implement a replacement for an expression that occurs several times

but it only made the replacement once! What do I do? . 7

5 Bells and Whistles. (Advanced) 7
5.1 How can I easily apply a function to a whole bunch of argument values? 7

CONTENTS 2

5.2 What’s a handy, powerful shorthand way to define functions? 8
5.3 Can I change the head of an expression without re-defining the expression? 8
5.4 How can I determine the head of an expression? . 8
5.5 Can I define default values to my function arguments? . 8
5.6 I am setting up a sequence of commands. What’s the cleanest, clearest, most straightforward

way to do this? . 8

Version 3.4 c©2000 by Michael A. Morrison February 2, 2000

3

1 Basic Syntax: What Everyone Should Know from the Outset. (Beginners)

1.1 What are the three most common syntax errors—and how can I avoid them?

1. Multiplication!

The single most common mistake newcomers make is to assume that ab means a times b. It doesn’t.
It’s the name of the single variable, ab. If you want to write a times b, use the asterisk, as a*b.

Tip Mathematica allows you to indicate multiplication using either a space or an asterisk. Thus 2 Sin[x]
and 2*Sin[x] are identical. You’re on safer ground, though, with the asterisk.

2. Functions!

The second most common mistake is to try to tell Mathematica to evaluate sin x by typing Sin(x). This
won’t work! Arguments to functions must be enclosed in square braces, not parentheses, as Sin[x].

3. Equations!

The third most common mistake is to try to write the equation a = b as a=b. That’s not an equation;
it’s an assignment: it tells Mathematica to expression a identical to the Mathematica expression b.
If you want to type the equation a = b, you must use the “double equals” notation, as a==b.

1.2 What are the five most important aspects of Mathematica syntax?

1. Command Names!

There are three kinds of commands in Mathematica: built-in commands (like Sqrt[]), commands
defined in packages (like Laplacian), and user-defined commands (like myfunction). All built-in and
package commands begin with a capital letter. Commands you define should begin with a lower-case
letter.

2. Arguments!

All Mathematica commands and functions which take arguments share a common syntax. The argu-
ment(s) to any function or command must be enclosed in square brackets: [< · · · >]. For example,
we denote sin x by Sin[x] not Sin(x).

This requirement holds even if the argument to a function or command is a list, as in ListPlot[{1,3,87}].

3. Lists!

Most of the items you enter in Mathematica are either (a) algebraic expressions (or equations); (b)
assignments (like a=b); function definitions; instructions that tell Mathematica to perform some task
(like Integrate or Plot); or lists. The list is extremely common, and all lists have the same structure.
The items in a list are enclosed in curly braces. Separate elements of a list by commas, as {a, b, c}.
Some lists contain as elements other lists. Not to worry: the structure is still the same.

4. Parts of a List!

To refer to an element of a list, use double square brackets. Thus we denote the third element (called
the third “part”) of the list named A as A[[3]].

5. Iterators!

Many Mathematica commands take iterators as arguments. An iterator is a list. Its elements specify
the range of a particular argument and its increments : i.e., the starting value, stopping value, and
increment between adjacent values. The generic form of an iterator is {i, imin, imax, istep}.

1.3 I want a summary of the ways Mathematica uses parentheses, brackets, braces, etc.
Ask and ye shall receive:

Version 3.4 c©2000 by Michael A. Morrison February 2, 2000

1.4 What do I absolutely have to know about command names? 4

arguments to functions square brackets f[x,y]
lists, vectors, & matrices curly braces {x,y,z}
indexing or extracting part of a list double square brackets list[[1]]
grouping in mathematical expressions parentheses a(b+c)
comments parentheses and asterisks (* comment *)

1.4 What do I absolutely have to know about command names?

Only three things—and one we’ve already mentioned.

1. Capital Letters!

All built-in Mathematica commands begin with a capital letter.

2. Complete Words (mostly)!

Almost all Mathematica commands are complete words (not abbreviations).

3. One Word from Many, all Capitalized!

If a command consists of more than one word, the first letter of each word is capitalized, as in
ParametricPlot[]. In this case, all words are adjacent: the command to construct a polar plot
is PolarPlot, not Polar Plot.

1.5 How can I exploit Mathematica’s naming convention to distinguish my commands from
its commands?

Begin all your variable names, functions definitions, and other expression with a lower case
letter, e.g., psi[x], not Psi[x] and plotWaveFunction[], not PlotWaveFunction.

1.6 Mathematica pretends not to know the name of a built-in command I just told it to
execute. What’s wrong?

If the kernel just returns your command unevaluated, you probably forgot to use capitals
where required in the command. Try using the Help Browser or command completion (in the
Input menu, via the submenu Complete Selection.

It is possible, however, that Mathematica may know your command but be unable to evaluate your
command. If you suspect this, check your command by inquiring via the ? query or poke around in the Help
Browser or try Command Completion

2 How Mathematica Syntax differs from Mathematics Syntax. (Everybody)

2.1 What’s a sure-fire safe way to avoid conflicts when I define a new function?

In the cell where you define your function, always make the first statement Clear.
The command Clear[f] instructs Mathematica to forget any assignments you might have already made

to the symbol f. If you’ve not made any such assignments, this command does nothing. It’s insurance, and
you should make this a firm habit from the start!

2.2 How do I specify negation in an equation?

Precede the operation to be negated by !. Thus != signifies �=.

2.3 How do I raise a quantity to a power?
Use the symbol ^ (Shift 6 on your keyboard). Thus to generate x3, write x^3.

Tip If you’re using version 3.0 or higher, use CNTL 6 on your keyboard to get a two-dimensional representation
x3. Get in the habit of always using this two-dimensional form, as it makes your input and output easier to
understand and check.

Version 3.4 c©2000 by Michael A. Morrison February 2, 2000

2.4 I keep telling Mathematica a number is complex, but it persists in treating it as real. What’s wrong? 5

2.4 I keep telling Mathematica a number is complex, but it persists in treating it as real.
What’s wrong?

Probably you’re using i to denote
√−1. In Mathematica, this number is denoted by a

capital letter, as I.
Thus the complex number a + ib is written a + I*b (note the asterisk to denote multiplication).

2.5 Mathematica isn’t treating my equations properly. What’s wrong?

You probably entered the equation the way you would write it down or see it in a book.
This won’t work. In Mathematica, you must specify equations using the logical operator ==.

To understand the difference between an assignment and an equation, study the following example. In
it, we use an immediate assignment = to assign the name eqn to the equation sin x + 7 = 0:

eqn = Sin[x] + 7 == 0

This, of course, would be nonsense in a mathematics book.

Warning We are so used to using = to signify equations that it’s very easy to fall back into this habit in Mathe-
matica. Watch out.

2.6 What’s the correct syntax for a matrix?

In Mathematica, we specify a matrix by a list of lists. Each element of the (outer) list
denotes a row of the matrix.

Thus to specify

A =
(

0 1
1 0

)

type

A = { {0,1},{1,0} }

3 Finer Points of Mathematica Syntax. (Intermediate)

3.1 How can I make sense out of the myriad equation solving commands Mathematica offers?

Easy! They all have the same syntax!
All built in commands that solve equations, either algebraically or numerically, have a common form

indicated here by the simplest of them, the command to solve n equation algebraically:

Solve[{< equations you want solved >,< variables to solve for >}].

3.2 The output from my equation solving commands looks useless. How do I extract the
actual answer from this output?

Commands that solve equations generate lists of replacement rules. You can extract the
solution from such lists by applying the replacement rule with the /. symbol. For instance, to
solve the equation x + 4 = 7, type

soln = Solve[x+4==7, x]
x /. soln

For more about replacement rules, see below.

3.3 When should I use the special Mathematica syntax to refer to the output from a command
I recently executed?

Never!

Version 3.4 c©2000 by Michael A. Morrison February 2, 2000

3.4 How do I enter text (e.g., file names, comments) in Mathematica? 6

Tip I urge you to avoid this bad habit. In most notebooks, you’ll delete cells and forget about them, so what
looks like the previous output may not actually be the one you want—especially next time you execute the
notebook. Just name your output using an assignment statement, then you can always refer to it.

Okay. If you must, use %n where n is the number in the desired Out[n] generated by your command
In[n].

3.4 How do I enter text (e.g., file names, comments) in Mathematica?

Any string of characters (e.g., a file name, a text label for a graph, a context name), must
be enclosed in double quotation marks.

If you’re using a notebook, just put your comments in a text or small text cell.

If you want to annotate a Mathematica command, enclose your comment in the symbols (* and *).
For example,

Z = 1 (* set the atomic charge *)

3.5 Mathematica won’t load a package I know it has access to! Am I incorrectly using Needs?

Probably you just forgot that context names (e.g., the names of packages in Needs state-
ments) always must be terminated by a backquote and must be enclosed in quotation marks.
This backquote is part of the context name, as Global‘.

3.6 Mathematica isn’t evaluating pieces of my expression in the right order. How can I
control the evaluation order?

Use parentheses to group commands.

Tip Use parentheses to control the sequence in which Mathematica executes commands in a multi-command
expression. For example, a (b + c) will generate the desired result ab+ac; if, however, you type a b+c, then
Mathematica will calculate ab + c. If you’re unsure whether Mathematica will execute individual operations
in your expression in the order you desire, use parentheses to force it to do so. Your parentheses always
override Mathematica’s built-in rules, and extraneous parentheses do no harm.

Warning Don’t use the hierarchy of grouping symbols standard in mathematics: { [(· · ·)] }. In Mathematica,
square brackets denote arguments and curly brackets denote iterators; only parentheses denote grouping.

4 Special Syntax for Functions and Assignments. (Intermediate)

4.1 How can I restrict my function to selected argument ranges?

To restrict the application of a function to arguments that satisfy a certain condition, use
the condition symbol /; in the argument list next to the variable to which it applies. After
the symbol, write the condition.

For instance, to define a spherical square well potential

V (r) =

{
−V0 r ≤ a

0 r > a

type

Clear[potential]
potential[r_ /; r <= a && r >= 0] := -V0
potential[r_ /; r > a] := 0

Version 3.4 c©2000 by Michael A. Morrison February 2, 2000

4.2 What’s the difference between immediate and delayed assignments in function definitions? 7

4.2 What’s the difference between immediate and delayed assignments in function defini-
tions?

To define a function and assign a value to a variable, you can use use either the notation
for an immediate assignment, =, or for a delayed assignments, :=. Almost always, you can use
delayed assignment, :=, and just not worry about it.

Here’s a brief introduction to the distinction between the two:

immediate assignment: Use = if you want Mathematica to evaluate the right-hand side of the assignment
when you type it in.

delayed assignment: Use := if you do not want Mathematica to evaluate the right-hand side until you
use it.

Warning Remember that in Mathematica, = does not mean the same thing it means in mathematics. In Math-
ematica, a=b+1 means “add 1 to the currently stored value of the variable [b], then assign the result to a
variable named a.”

Thus in Mathematica we can write assignment expressions that would be senseless in regular mathematics,
such as

b = b + 1

4.3 What is Mathematica’s syntax for denoting arguments to functions?

To denote a generic argument to functions, use a pattern.
In Mathematica, a pattern is a class of structurally similar expressions. We signal Mathematica that we

are using a pattern by a the underscore symbol _. Most commonly, we use a named pattern by appending
this pattern symbol to the name of the argument. For instance, to define a function f of the variable x,
write f[x_].

Other useful patterns are x__ (double underscore), which assigns the name x to one or more arguments,
and x___ (triple underscore), which assigns the name x to zero, one, or more arguments.

4.4 I want to make a one-shot replacement in an expression? Do I have to define a function?

Nope. The easiest way is to use a replacement rule.
Replacement rules do exactly what they say: they replace one expression by another. Mathematica offers

two kinds of replacement rules. Their different roles parallel those of the two kinds of assignments. To write
a replacement rule, use either the notation for an immediate replacement, -> (read as “goes to”) or
for a delayed replacement, :>. Fortunately, you can almost always use immediate replacements.

To invoke the replacement rule, use the symbol /. (read as “given that”). Thus Sin[x] + x /. x -> 4
instructs Mathematica to replace all occurrences of x by 4 in the expression that precedes the /. symbol.
So typing this generates sin(4) + 4.

4.5 I told Mathematica to implement a replacement for an expression that occurs several
times but it only made the replacement once! What do I do?

To force Mathematica to invoke the replacement over and over until it can no longer change
the expression, use the notation for repeated replacement, //..

5 Bells and Whistles. (Advanced)

5.1 How can I easily apply a function to a whole bunch of argument values?

To map a function onto a list, you can give the list to the function as its argument (enclosed
in square brackets).

Alternatively, you can use the mapping symbol @.

Version 3.4 c©2000 by Michael A. Morrison February 2, 2000

5.2 What’s a handy, powerful shorthand way to define functions? 8

Tip Most built-in Mathematica functions act on lists element-by-element. That is, Mathematica typically
maps functions across lists. Such functions have the Attribute Listable. If you want to give this attribute
to your own function f, type SetAttributes[f,Listable].

5.2 What’s a handy, powerful shorthand way to define functions?

Use anonymous functions.

To write an anonymous pure function, we use two symbols. Immediately after the function definition,
use the symbol & to tell Mathematica that whatever preceded this symbol is a pure function. In the body of
the function, we represent the argument by the symbol #.

5.3 Can I change the head of an expression without re-defining the expression?

Yep. That’s what Apply is for.

To change the head of an expression, either give the expression to Apply or use the apply symbol
@@. Thus Plus @@ {a,b,c} returns a+b+c, because we changed the head of {a,b,c} from List to Plus.

5.4 How can I determine the head of an expression?

Either use the command Head or, if you want the whole nine yards, use FullForm.

5.5 Can I define default values to my function arguments?

Sure you can. To assign a default to a pattern variable, use a colon, :.
Suppose we want to define a function f(x, a) = ax2 and know that although usually a = 2, we want the

flexibility to consider other values of a. We can, of course, just define

f[x_,a_] = a * x^2

and just type f[x,2] to invoke 2x2. But there is an easier way. If we define the default value a = 2 in the
function definition,

f[x_,a_:2] = a * x^2

then Mathematica will interpret f[x] as 2x2.

5.6 I am setting up a sequence of commands. What’s the cleanest, clearest, most straight-
forward way to do this?

Use piping. This is a syntax mode in which the output from one command is “piped” into
the next command in the sequence. The double backslash symbol // feeds the output from
the command that precedes it into the one that follows it. Thus each command appears in
your notebook in the desired execution sequence.

Tip Getting used to piping takes a little practice, and usually requires the use of anonymous functions. But
it’s worth it! The increase in clarity of your commands will make it much easier to find and fix errors and
to understand your work months (or years) later when you next need it. Piping is for everybody—not just
advanced users!

To illustrate the improved clarity, consider the following equivalent formulations:

Simplify[ComplexExpand[TrigToComplex[Conjugate[psi[x]]*psi[x]]]]

Conjugate[psi[x]]*psi[x] // TrigToComplex // ComplexExpand //
Simplify

Which would you prefer to debug?

Version 3.4 c©2000 by Michael A. Morrison February 2, 2000

