
Mathematica Tips, Tricks, and Techniques

Two-Dimensional Graphics

Michael A. Morrison

(Version 3.3: February 2, 2000)

[N]ow look up at any office building, look into living-room windows at night: so many people
sitting alone in front of monitors. We lead machine-centered lives; now everyone’s life is full
of automated tellers, portable phones, pages, keyboards, mice. We live in a contest of the
fittest, where the most knowledgeable and skillful win and the rest are discarded; and this
is the working life that waits for everybody. Everyone agrees: be a knowledge worker or be
left behind.
—Close to the Machine,
by Ellen Ullman

Contents

1 Common practical problems using 2–D graphics. (Everybody) 2
1.1 I want to use ListPlot to plot pairs of numbers (x, y). I now have all the x values in one list

and all the y values in another. What do I do? . 2
1.2 Rather than plot two curves on the same graph, I want to superimpose two graphs on top of

one another. How do I do this? . 2
1.3 I want to use Show to superimpose two graphs, but I don’t want Mathematica to show me the

individual graphs. Can I suppress the output of the individual plot statements? 3

2 Elementary Formatting. (Everybody) 4
2.1 How can I make Mathematica draw a nice little frame around my plots? 4
2.2 I’m plotting several curves, but I can’t tell one from another! How can I make Mathematica

use different line types for different curves on the same graph? 4
2.3 Mathematica insists on putting a vertical line near the left vertical axis of my plot. How do I

get rid of this? . 5

3 Coping with error messages from Mathematica plot commands. 6
3.1 When I try to plot my function, Mathematica spews out errors that claim that my function

is “not a machine-size real number.” What’s going on? . 6

4 Efficient Plotting with Mathematica. (Intermediate) 6
4.1 Mathematica is taking an unconscionably long time to generate my plot. What can I do to

nudge it along? . 6
4.2 What does the command Evaluate do? . 6
4.3 When is it advisable to use Evaluate with Mathematica graphics? 6
4.4 When is it essential to use Evaluate with Mathematica graphics? 7
4.5 What’s the most efficient way to plot the InterpolatingFunctions returned by Mathemat-

ica’s numerical differential-equation solver? . 8
4.6 Is it ever a mistake to use Evaluate? . 9
4.7 Can I use Evaluate to speed up other Mathematica commands? 9
4.8 Can I use Evaluate to force Mathematica to carry out analytic commands it otherwise can’t

perform? . 10

Tips on 2–D Graphics 2

1 Common practical problems using 2–D graphics. (Everybody)

1.1 I want to use ListPlot to plot pairs of numbers (x, y). I now have all the x values in one
list and all the y values in another. What do I do?

Use Transpose to construct a list of data to be plotted.
This trick is easy to understand once you understand that ListPlot wants a list of lists, where each inner

sublist contains one pair of numbers to be plotted. For instance, suppose you want to plot some experimental
data which you’ve entered in two lists

xData = {15, 22.5, 30}
yData = {22 , 27, 33}

To use Transpose, you construct a new list whose elements are the two sublists xData and yData. We then
feed our new list to Transpose. Mathematica returns a list in the form ListPlot needs:

dataToPlot = Transpose[{xData,yData}]
{{15,22},{22.5,27},{30,33}}

ListPlot[dataToPlot];

We can more clearly show the sequence of steps involved in creating the new list by using the piping syntax,

dataToPlot = {xData,yData} // Transpose
{{15,22},{22.5,27},{30,33}}

Tip If you give ListPlot only one list, it assumes that the variable you want plotted on the horizontal axis
varies in unit steps from a minimum value of 1.

Warning The command Transpose will gripe if xData and yData contain different number of elements. You can
check this by feeding each sublist to the command Length.

Warning Watch your syntax! The command Transpose will gripe (a lot) if you forget to enclose the sublists in
an outer lists; that is, don’t enter Transpose[xData,yData] unless you want to see new irritating error
messages.

1.2 Rather than plot two curves on the same graph, I want to superimpose two graphs on
top of one another. How do I do this?

Name your plots. Then use Show.
A very common situation in using Mathematica to do physics is the following. You’ve generated a nice

graph—say of some interesting data. Elsewhere in your notebook you’ve generated another graph related to
the first—say of a function you think may explain the data. Now you want to compare the two. Mathematica
offers several ways to do this. The simplest is to use the command Show, which “shows” its arguments one
atop the other.1 If you’ve named your data plot something imaginative like dataPlot and your function
plot functionPlot, then all you have to do to see them superimposed atop one another is to enter

Show[{dataPlot,functionPlot}].

Tip The trick to efficient use of Show is to assign a name to each of your graphs. Then you can just feed Show
the names you assigned and it will do the rest.

Tip You don’t have to enclose the sequence of plots you want superimposed in curly brackets, as I did in this
example. But I recommend doing so. It does no harm, and it conforms to the general Mathematica syntax
rule that when you feed a built-in function multiple values for a single argument, you enclose those values
in braces—i.e., you use a list.

1It’s arguments must be what Mathematica calls graphics objects. That is, you can’t Show an integral on top of a sum.

Version 3.3 c©2000 by Michael A. Morrison February 2, 2000

Tips on 2–D Graphics 3

Warning When Mathematica superimposes two (or more) plots, it takes the axes labels, plot labels, legends, special
ticks, and other formatting information from the first plot in the argument list. So if you’ve created beautiful
labels for one of the individual plots you want to superimpose, be sure the name of the plot with the labels
comes first in the argument list to Show.

In the above example, if I have carefully labelled the axes and the plot for dataPlot but not for
functionPlot and I enter

Show[{functionPlot,dataPlot}];

Mathematica will correctly superimpose the plots but the output won’t have any of my labels. The reason
is that Mathematica took the formatting information from functionPlot, which in this example has no
labels.2

1.3 I want to use Show to superimpose two graphs, but I don’t want Mathematica to show
me the individual graphs. Can I suppress the output of the individual plot statements?

Sure! Use the DisplayFunction option.
Once you get the hang of Show, you’ll be using it a lot. Sure as shootin’, you’ll encounter the following

situation. You know in advance that you want to superimpose several graphs. But the individual graphs
aren’t interesting; you want Mathematica to show you only composite graph.

There are two steps to accomplishing this. Both are achieved with the option DisplayFunction, which
is accepted by all Mathematica graphics commands. Essentially, DisplayFunction tells Mathematica where
to show the graph it constructs as a result of your graphics command. Like all options, it has the form of a
replacement rule. All you need to know now about the DisplayFunction option is two possible values;
each value accomplishes one step for you.

1. Tell Mathematica to suppress the graphical output from the commands that create the individual graphs.
To do this, give the option DisplayFunction->Identity to each of these commands.

2. Tell Mathematica to show you the composite graph it construct by superimposing the individual graphs.
To do this, give Show the option DisplayFunction->$DisplayFunction to Show, after the list of names
of plots you want to superimpose.

Tip Always conclude your graphics commands with a semicolon after the last square bracket. Doing so will
keep Mathematica from cluttering up your notebook with useless output lines like -Graphics-.

Warning Don’t forget the dollar sign on the value of DisplayFunction. This quantity is what Mathematica calls
a global variable, and the names of all global variables begin with a dollar sign.

2This description is a little imprecise. What Mathematica actually does is to literally superimpose the arguments atop
one another in such a way that the first graph is on top of the second is on top of the third, etc. So when it superimposed
functionPlot on top of dataPlot, the (blank) axes and plot labels for functionPlot covered up my elegant labels for dataPlot.

Version 3.3 c©2000 by Michael A. Morrison February 2, 2000

Tips on 2–D Graphics 4

Here’s the sequence of commands that creates only a composite plot for the example in Question 1.2.
Note that I’ve named the function to which I want to compare the data f[x]; the definition of this function
isn’t shown here.

dataPlot = ListPlot[dataToPlot,
DisplayFunction->Identity];

functionPlot = Plot[f[x],
{x, 0, 30},

DisplayFunction->Identity];

Show[{functionPlot,dataPlot},
DisplayFunction->$DisplayFunction];

2 Elementary Formatting. (Everybody)

2.1 How can I make Mathematica draw a nice little frame around my plots?

Use the option Frame->True.

Warning If you use this option, then you can’t use AxesLabel to label your axes. Instead, you must use FrameLabel.

2.2 I’m plotting several curves, but I can’t tell one from another! How can I make Mathe-
matica use different line types for different curves on the same graph?

Use the PlotStyle option.
This option lets you specify the format of each curve generated when you ask one of the Mathematica

plotting commands to graph several functions. If you don’t specify this option, then Mathematica will draw
all your curves with a solid black line. With PlotStyle, you can make lines different colors, dashed or
dotted, of different thicknesses, etc. Like all options, we specify PlotStyle as a replacement rule. The right
hand side of this particular rule must be a list.

For instance, the following command generates a plot of sin(x) as a red dashed curve.

Plot[Sin[x],
{x, 0, Pi},
PlotStyle->{ Red, Dashing[{0.02}] }];

Warning To specify colors by name, as in the above example, you must load the package Graphics‘Master‘ in
the bookkeeping section of your notebook!

Tip Always use PlotStyle to ensure that each curve on your graph is clearly distinguished from the others.

Warning The only mildly tricky thing about PlotStyle is the syntax used to specify dashed lines. The command
Dashing takes one or two arguments; in either case, you must enclose the argument(s)—even if there is only
one—in curly brackets. That is, you must alwasy feed Dashing a list.

To control the line types in a graph that consists of several curves, we just include different formatting
commands in a list on the right hand side of PlotSytle. Specifically, we include formatting commands in
sublists on the right hand side. Each sublists contains the formatting commands we want Mathematica to
use for a single curve. Mathematica will use the first style commands in the first sublist to plot the first
curve in the function list, the second style commands for the second curve, and so forth. If you want one of
the curves drawn in Mathematica’s default style, just include an empty sublist {} in the appropriate slot in
the PlotStyle list.

Warning If you give Mathematica more curves than you do sublists, it will cycle through your sublists. Hence
Mathematica will plot more than one curve with the same set of formatting commands—resulting in a

Version 3.3 c©2000 by Michael A. Morrison February 2, 2000

Tips on 2–D Graphics 5

confusing plot in which two or more curves look alike. If, however, you give more style sublists than you do
curves, Mathematica will just ignore the extra sublists.

All this is easily understood by example. Let’s extend the above example to show three curves.

Plot[{Sin[x], Cos[x], x^2}, {x, 0, Pi},
PlotStyle->{

{},
{Red, Thickness[0.01], Dashing[{0.02}]},
{Blue, Dashing[{0.01}]}

}];

In this example, the list of style commands specified with the PlotStyle option instructs Mathematica
to proceed as follows. Plot sinx using its default style (a solid black line). Plot cosx using a thick red
medium-dashed curve. Plot x2 using a blue small-dashed curve.

Tip Colors are neat, but don’t use only colors to distinguish line types. Colors, obviously, print in color
only on a color printer. You never know when you’ll want to print output on a black-and-white printer. So
whether or not you use colors, get in the habit of distinguishing curves using specifying different thickness
or dashing forms.

2.3 Mathematica insists on putting a vertical line near the left vertical axis of my plot. How
do I get rid of this?

Use the PlotRange option to control the limits of the horizontal axes.

This jolly little artifact of Mathematica’s awesome graphics commands is a nuisance that appears when-
ever the left limit of the horizontal axis is not a convenient number for Mathematica’s automatic tick
assignment algorithm. To get rid of it, take charge of the axis limits yourself. Suppose you want the hori-
zontal axis to run from x = 0 to x = 3. The easiest way to ensure this is to use the option

PlotRange->{{0,3},Automatic}.
The first sublist in this option contains the lower and upper limits of the horizontal axis (here, the x axis);
the second sublist contains the same information for the vertical axis. If you’re happy to let Mathematica
determine one of these limits for you, just insert Automatic in that place in the list. (If you want Mathe-
matica to determine both ranges, you don’t need this option!) Of course, you can control the vertical range
also. For instance, if in the same graph you want the vertical axis to run from y = 0 to y = 100, then change
this option to

PlotRange->{{0,3},{0,100}}.

Warning Watch your syntax! You must give the PlotRange option a list of lists—unless one of the ranges is
Automatic.

Tip If you want to force Mathematica to show you the entire range of the function you’re plotting, set
PlotRange to All. This overrides whatever decisions Mathematica has made about your function and shows
you the whole thing. I usually use this option not as an end in itself, since the whole plot may be very hard
to interpret physically, but rather as a precursor to manipulating the plot range to show me what I want to
see about the function.)

Version 3.3 c©2000 by Michael A. Morrison February 2, 2000

Tips on 2–D Graphics 6

3 Coping with error messages from Mathematica plot commands.

3.1 When I try to plot my function, Mathematica spews out errors that claim that my
function is “not a machine-size real number.” What’s going on?

Your function probably contains either units or symbols which have no values assigned to
them.

This instance—the most common error generated by graphics commands—is a rare case where a Math-
ematica error command means exactly what it says. The signature of this message is Plot::"plnr". When
you see this (usually in profusion) where you expected to see a plot, go back to the plot command and
cut-and-paste your function into a nearby cell. Execute the function and scrutinize the output for any non-
numeric quantities. Then use assignment statements before the plot command and/or replacement rules in
the argument list to ensure that the function you’re feeding the command is numeric at all values of the
argument.

Warning Mathematica’s graphics commands require arguments that are numerical except for the independent
variables with respect to which these arguments plotted.

4 Efficient Plotting with Mathematica. (Intermediate)

4.1 Mathematica is taking an unconscionably long time to generate my plot. What can I do
to nudge it along?

You’ve come to the right place! The answer’s easy: use Evaluate! To learn more, read the
other questions and answers in this section.

4.2 What does the command Evaluate do?

This command lets you force Mathematica to evaluate an argument to a function. It is
relevant when wrapped around an argument to a function.

To understand the power of Evaluate, you need to understand a feature of many of Mathematica’s
graphics (and numerical) commands: they don’t evaluate their arguments. This strange statement is best
explained by illustrate. Suppose you’ve defined a function f[x] and now want to plot it. When you enter
Plot[f[x],{x,0,Pi}];
Mathematica first looks at the argument (here, f[x]) to determine whether it’s a list. If so, it prepares to
plot the several functions it expects to find in the list. If not, it assumes that the argument is an expression
that is numeric except for the independent variable with respect of which you’re plotting, here the variable
x. Mathematica then determines a grid of values of this variable between the specified upper and lower
limits (values of x between 0 and π). Finally, it plugs those values one at a time into the argument and then
evaluates the argument.

But if you type
Plot[Evaluate[f[x]],{x,0,Pi}];
then once Mathematica has determined that its argument isn’t a list, it will evaluate f[x] before plugging
in values of x. In practice, this means that Mathematica will perform any algebraic simplifications it can
on f[x] only once. Without Evaluate, it will perform these simplifications for every value of x in the grid
it determines, which may waste gigantic amounts of CPU time.3

4.3 When is it advisable to use Evaluate with Mathematica graphics?

When you want to plot one or more functions that are algebraically complicated or com-
putationally demanding.

The plot commands in Version 3.0 of Mathematica are much more forgiving than those in previous ver-
3For more advanced discussions of Evaluate, see §5.3.3 of Programming in Mathematica, Third Edition by Roman Maeder,

(New York: Addison Wesley Longman, 1997).and §7.2.2 of Power Programming with Mathematica: The Kernel by David
B. Wagner, (New York: McGraw Hill, 1996)..

Version 3.3 c©2000 by Michael A. Morrison February 2, 2000

Tips on 2–D Graphics 7

sions. Usually, they will generate plots under circumstances where earlier versions would croak Nevertheless,
you can almost always speed up the generation of plots by wrapping the argument to the graphics command
in Evaluate. How much this tactic speeds up plot generation depends on the analytic complexity of the
function you want to plot. For example, Evaluate has almost no effect on the plot of a simple sin function,
as you can verify by entering the following:4

Plot[Sin[x], {x,0,Pi}]; // Timing
Plot[Evaluate[Sin[x]], {x,0,Pi}]; // Timing

But if the function is more complicated, its effect can be dramatic.
For instance, here is a function that arises in the solution of Laplace’s equation for a standard boundary-

value problem in electricity and magnetism:5

V (x, y) =
4
π

mmax∑

m=0

1
2m − 1

sin[(2m − 1)πy] e−(2m−1)πx. (1)

The sum, which formally runs to mmax = ∞, in practice must be truncated at some finite mmax. An
interesting question about such functions is, how many terms must be included to generate the function to
sufficient accuracy? This question is easily answered with Mathematica by defining a function that generates
the function, which we’ll call v, and including mMax as one of its arguments: v[x_,y_,mMax_]. Doing so and
executing these two commands shows the dramatic effect of Evaluate:

Plot[v[0,y,100], {y,0,1}];
Plot[Evaluate[v[0,y,100]], {y,0,1}];

In both cases, Mathematica draws the plot. But the former (without Evaluate) takes eight times longer
than the latter! Since some such truncated sums require many hundreds or thousands (or more) terms to
achieve sufficient precision, using Evaluate becomes essential to retaining one’s sanity!

Tip Use of Evaluate to save CPU time and internal memory becomes more important when plotting several
functions (i.e., when the argument to your graphics command is a list) than when plotting a single function.

4.4 When is it essential to use Evaluate with Mathematica graphics?

When plotting a named function (or list of functions) and when the argument to a graphics
command uses Table.

Here’s an example of one of the most common—and irritating—glitches newcomers to Mathematica
encounter. You want to plot a list of functions—say, sin(nx) for several values of n. Begin an efficient
Mathematica user, you know that you can use Table to generate the list of functions. So you type

Plot[Table[Sin[n*x], {n,1,7}],
{x, 0, Pi}];

and are enraged when Mathematica spits out a stream of error messages informing you that

Table[Sin[n x], {n, 1, 7}] is not a machine-size real number

at various values of x where you know darn well it is a machine-size real number. What went wrong?
Remember how graphics commands work. Mathematica tried to insert values of x into the argument

Table[Sin[n*x], {n,1,7}]. This attempt resulted in an unevaluated quantity that, indeed, is a table,
not a number. We can avoid the problem in two ways: the inefficient way is to just list the functions; the
easy, efficient way is to wrap the argument in Evaluate:

Plot[{Sin[x], Sin[2x], Sin[3x], Sin[4x], Sin[5x], Sin[6x], Sin[7x]},
4Actually, the effect is deleterious! Since the second command asks Mathematica to perform a useless chore, it actually takes

longer than the first command. Try it and see!
5This function is the electric potential of two grounded semi-infinite parallel electrodes. See Tam, §5.2.

Version 3.3 c©2000 by Michael A. Morrison February 2, 2000

Tips on 2–D Graphics 8

{x,0,Pi}];

Plot[Evaluate[Table[Sin[n *x], {n,1,7}]],
{x, 0, Pi}];

The second way works because you’ve told Mathematica to Evaluate Table[Sin[n *x], {n,1,7}] before
it starts substituting values of x into this argument. When it does so, it (internally) generates the list
{Sin[x], Sin[2x], Sin[3x], Sin[4x], Sin[5x], Sin[6x], Sin[7x]}, then starts plugging in numbers.
So to Mathematica, the two forms shown above are equivalent. The second, however, is easier to read, saves
typing, and minimizes typos—good things all.

Incidentally, you may try (for some perverse reason) to “trick” Mathematica by naming the list of
functions, then graphing it, as

functionList =
{Sin[x], Sin[2x], Sin[3x], Sin[4x], Sin[5x], Sin[6x], Sin[7x]};

Plot[functionList, {x,0,Pi}];

Naughty, naughty. Try this and watch Mathematica spew errors at you. Then try wrapping functionList
in Evaluate and watch Mathematica do what you want. (It’s not nice to fool mother Mathematica.)

4.5 What’s the most efficient way to plot the InterpolatingFunctions returned by Mathemat-
ica’s numerical differential-equation solver?

Use Evaluate!
The many wonderful commands Mathematica uses to solve equations numberically return Mathematica

objects called interpolating functions. Interpolating functions are easier to manipulate than tables of
numbers (the alternative), and can be fed directly into commands to plot, numerically integrate, or otherwise
process solutions to equations. You don’t really need to know in detail what an interpolating function is so
long as you are careful in its use. Most often, what you want to do with an interpolating function is to plot
it. Nothing could be easier: you just feed it to the appropriate graphics command as the argument. But
because of the way graphics commands deal with arguments, generating the graph may take Math a long
time—unless you use Evaluate!

Evaluate is a smart little command. If you feed it an InterpolatingFunction, it will perform a
simplification (using Mathematica’s internal compiler) that will enable it to plot (or otherwise process)
the function much more efficiently. For instance, here are the Mathematica commands to solve the set of
simultaneous differential equations

d

dt
x(t) = −y(t)− x(t)2 (2a)

d

dt
y(t) = 2x(t) = y(x) (2b)

subject to the initial conditions

x(0) = y(0) = 1. (2c)

differentialEqns =
{x’[t] == -y[t] - x[t]^2,
y’[t] == 2*x[t] - y[t],
x[0] == y[0] == 1};

soln = NDSolve[differentialEqns, {x,y}, {t,0,50}]

Either of the following Mathematica commands will generate a parametric plot of the solution,

Version 3.3 c©2000 by Michael A. Morrison February 2, 2000

Tips on 2–D Graphics 9

ParametricPlot[{x[t],y[t]} /. soln,
{t,0,50},
PlotRange->All];

ParametricPlot[Evaluate[{x[t],y[t]} /. soln],
{t,0,50},
PlotRange->All];

But the second command forces Mathematica to compile the function internally, so it generates the plot
33% faster than the first command! Again, the magnitude of this effect—and the importance of using
Evaluate—grows dramatically with the complexity of the functions being plotted.

4.6 Is it ever a mistake to use Evaluate?

It depends on what you mean by “mistake.”
I know of no instance where using Evaluate causes Mathematica to screw up. At worst, if you wrap

Evaluate around an argument that is so simple that Mathematica can’t do anything with it, you’ll just cause
Mathematica to take a bit longer to generate your plot than it would have otherwise. But if the function is
that simple, the amount of CPU time we’re talking about is trivial anyway.

4.7 Can I use Evaluate to speed up other Mathematica commands?

Sure—if they process their arguments the same way graphics commands do.
The second most common use of Evaluate I know of it so speed up numerical integration. The command

NIntegrate handles its arguments just like graphics commands do. For instance, suppose you want to
evaluate numerically the integral of two spherical harmonics,

∫
Ω Y2,0(θ, ϕ)Y3,0(θ, ϕ) dΩ, where Ω refers to the

unit sphere, the domain of which is 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.6 Here are two ways to ask Mathematica to
carry out this chore:

6This isn’t a very smart thing to want to do. First, the spherical harmonics Y� m�
(θ, ϕ) are orthogonal with respect to �,

so you know in advance that this argument is zero. Second, if you forget, you can ask Mathematica to evaluate this integral
analytically, which it can do in about 2 seconds. Still, this example illustrates my point.

Version 3.3 c©2000 by Michael A. Morrison February 2, 2000

Tips on 2–D Graphics 10

NIntegrate[
Evaluate[

SphericalHarmonicY[2, 0, theta, phi]*
SphericalHarmonicY[3, 0, theta, phi]],

{theta,0,Pi}, {phi,0,2Pi}]

NIntegrate[
SphericalHarmonicY[2, 0, theta, phi]*
SphericalHarmonicY[3, 0,theta, phi],

{theta,0,Pi}, {phi,0,2Pi}]

The first of these commands executes (on my machine) in about 26 seconds. The second takes so long that
I gave up and aborted the command. The reason is that the first command forces Mathematica to execute
the following algebraic simplification only once, before it starts plugging in values of θ and φ:

Y2,0(θ, ϕ)Y3,0(θ, ϕ) =
√

35
16π

cos θ(−1 + 3 cos2 θ)(−3 + 5 cos2 θ). (3)

With the second, Mathematica performs this simplification for every value of θ and φ it thinks it needs to
generate the numerical integral you asked for. Grossly inefficient!

Tip To check whether your favorite numerical command processes arguments like graphics commands do, use
the command Attributes to see if the command has the attribute HoldAll. If so, then you may want to
use Evaluate to take charge of the evaluation order.

4.8 Can I use Evaluate to force Mathematica to carry out analytic commands it otherwise
can’t perform?

Absolutely not. This isn’t what Evaluate does.
All Evaluate does is influence the order in which Mathematica performs commands it can perform. If

you enter a (legitimate) Mathematica command and the kernel returns the command unevaluated, that
means Mathematica could not perform the command. You’re out of luck. For instance, Mathematica can’t
evaluate

∫
tan(sinx) dx, so it just returns your command:

In[1] := Integrate[Tan[Sin[x]],x]
Out[1] := Integrate[Tan[Sin[x]],x]

Mathematica has done its best. Wrapping this command in Evaluate won’t help. Your only recourse is to
seek a numerical value using NIntegrate. But that’s another story.

Version 3.3 c©2000 by Michael A. Morrison February 2, 2000

