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Semiclassical Electromagnetic Casimir Self-Energies

Martin Schaden™
Rutgers University, 211 Smith Hall, 101 Warren St., Newark, NJ 07102, U.S.A.

The electromagnetic Casimir energies of a spherical and a cylindrical cavity are analyzed semiclassically. The
field theoretical self-stress of a spherical cavity with ideal metallic boundary conditions is reproduced to better
than 1%. The subtractions in this case are unambiguous and the good agreement is interpreted as evidence that
finite contributions from the exterior of the cavity are small. The semiclassical electromagnetic Casimir energy
of a cylindrical cavity on the other hand vanishes to any order in the real reflection coefficients. The Casimir
energy of a cylindrical cavity with a perfect metallic and infinitesimally thin boundary on the other hand is finite
and negative[E]. Contrary to the spherical case and in agreement with Barton’s perturbative analysis[EH], the
subtractions in the spectral density for the cylinder are not universal when only the interior modes of are taken
into account[E]. The Casimir energy of a cylindrical cavity therefore depends sensitively on the physical nature
of the boundary in the ultraviolet whereas the Casimir energy of a spherical one does not. The extension of the
semiclassical approach to more realistic systems is sketched.

1. INTRODUCTION spherical cavity, the electromagnetic Casimir
energies of dielectric slabs[EEIEY], metallic
parallelepipeds[EAFARANA and long cylinders[,
CAEREAPT have been computed in this manner.

However, most systems are not integrable and
often cannot even be approximated by integrable
systems. It thus is desirable to develop reli-
able methods for estimating the Casimir ener-
gies of classically non-integrable and even chaotic
systems. Balian, Bloch and Duplantier calcu-
late Casimir energies based on a multiple scatter-
ing approximation to the Green’s function [[EIJZH].
This approach does not require knowledge of the
quantum mechanical spectrum and the geomet-
ric expansion in principle is exact for sufficiently
smooth and ideally metallic cavities. However,
ultra-violet divergent contributions have to be
subtracted at every order of the multiple scat-
tering expansion. The relative importance of
the finite remainder at each order in the multi-
ple scattering expansion is hard to assess a pri-
ori and it in practice is often difficult to carry
the expansion beyond the first few terms. In[Z]
a semiclassical method was proposed to esti-
mate (finite) Casimir energies. It is based on
Gutzwiller’s trace formulad] for the response

Demonstrating that the collective interaction
of atomic systems in some cases have macroscopic
consequences, Casimir obtained the now famous
attractive force between two neutral metallic
platesfll in terms of the boundary conditions
they impose on the electromagnetic field. Half
a century later, his prediction has been verified
experimentally[l] to better than 1%.

Twenty years after Casimir’s prediction for two
parallel plates, Boyer calculated the zero-point
energy of an ideal conducting spherical shell[H].
Contrary to intuition derived from the attraction
between two parallel plates, the sphere tends to
be expanded. Boyer’s result has since been im-
proved in accuracy and verified by a number of
field theoretic methods[AEEAR — even though
there may be little hope of observing this effect
experimentally in the near future[H].

Since field theoretic methods require explicit
or implicit knowledge of cavity frequencies, they
have predominantly been successfully employed
to obtain the Casimir energies of classically
integrable systems.  Thus, in addition to a
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function and is suitable for Casimir energies of
hyperbolic and chaotic systems[ZAPAPH with iso-
lated classical periodic orbits. Although not ex-
act in general, the semiclassical approximation as-
sociates the finite (Casimir) part of the vacuum
energy with optical properties of the system. It
captures aspects of Casimir energies that have
been puzzling for some time[ZH]. Path integral
methods[ZAZAPZIET in principle allow one to ob-
tain Casimir interactions between disjoint bodies
to arbitrary precision. Due to unresolved renor-
malization problems, these methods have so far
not been used to study the self stress of cavities.
The purpose of this article is to estimate and ana-
lyze the Casimir stress of some cavities semiclas-
sically. To compare with field theoretic results
for spherical and cylindrical cavities, a semiclas-
sical method that is adapted to classically inte-
grable systems 1s employed. The robustness of
the Casimir energy under small changes of the
boundary conditions turns out to be of crucial
importance for the semiclassical analysis.

The simplicity, transparency and surpris-
ing accuracy of the semiclassical approxima-
tion is demonstrated in Boyer’s problem B
JAH, that is in determining the electromag-
netic Casimir energy of a spherical cavity with
an (ideal) metallic boundary. The semiclassical
analysis of this problem is an order of magni-
tude simpler than any given previously. However,
since no bounds are obtained, it at present is not
possible to judge the accuracy of this approxima-
tion without comparing to exact field theoretic
results[H]. Tt will become rather clear though,
that the semiclassical analysis is accurate enough
to infer the sign of the Casimir energy of a cavity
by geometric arguments when the contribution
from periodic orbits does not vanish. We shall see
in sect. 4 that periodic orbits in fact do not con-
tribute to the Casimir energy of a long cylindrical
cavity. The somewhat surprising null-result that
the Casimir energy of a cylinder [N ENFEA RS
vanishes to first order in the reflection coefficients
thus 1s readily explained by geometric optics.
However, the semiclassical Casimir energy of a
cylindrical cavity vanishes to all orders in the real
reflection coefficients and thus also vanishes for
an ideal metallic cavity. The discrepancy to the

finite field theoretic Casimir energy of an ideal-
i1zed, infinitesimally thin cylindrical boundary be-
tween non-dispersive media with the same speed
of light [EAFAIT can be traced to the presence of
a logarithmic divergence observed by Barton[Ei]
in his perturbative treatment of the non-ideal di-
lute case. The exact cancellation of this diver-
gence in the field theoretic approach is due to the
infinitesimal thickness of the assumed boundary —
interior and exterior contributions to the Casimir
energy in this case depend on just one common
scale, the radius of the cylinder.

2. The Dual Picture: Casimir Energies of
Integrable Systems in Terms of Periodic
Rays

Integrable systems may be semiclassically
quantized in terms of periodic paths on invari-
ant tori[B2] — in much the same manner as Bohr
first quantized the hydrogen atom. Although in
general not an exact transformation, classical pe-
riodic orbits on the invariant tori are dual to the
mode frequencies in the semiclassical sense. Ap-
plying Poisson’s summation formula, the semi-
classical Casimir energy (SCE) due to a massless
scalar may be written in terms of classical peri-
odic orbits[ZAFAEH],
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The components of the d-dimensional vector I
in Eq.(@M are the actions of a set of properly nor-
malized action-angle variables that describe the
integrable system. The exponent of the inte-
grand in Eq.(@M) is the classical action (in units
of h) of a periodic orbit that winds m; times
about the i-th cycle of the invariant torus. H(I)
is the associated classical energy and fy, is the
Keller-Maslov index[EAED of a class of periodic
orbits identified by m. The latter is a topologi-
cal quantity that does not depend on the actions
I. To leading semiclassical order, the (primed)
sum extends only over those sectors m with clas-



sical periodic paths of finite action (see below).
The correspondence in  Eq.(ll) can only be ar-
gued semiclassically[Z3EH| and the integrals on
the RHS therefore should be evaluated in station-
ary phase approximation (sp).

Contributions to the Casimir energy from high
frequencies correspond to those from short pe-
riodic orbits in this dual picture. Divergences
due to periodic classical paths of vanishing length
(and thus vanishing total action) on the RHS
of Eq.(ll) correspond to ultra-violet divergences
of the mode sum on the LHS of Eq.(l). If these
divergences can be subtracted unambiguously [,
THES the dependence of the vacuum energy on
macroscopic properties of the system is semiclas-
sically represented by contributions due to clas-
sical periodic orbits of finite action only. The
primed sum on the RHS of Eq.(@ll) indicates this
restriction?. The (divergent) Weyl contribution
to the vacuum energy from the m = (0,...,0)-
sector in particular has to be subtracted. To-
gether with an evaluation of the integrals in
stationary phase, this defines the semiclassical
Casimir energy (SCE). To physically interpret the
SCE, one has to consider the implicit subtractions
in the spectral density [ZIZAET.

3. The Spherical Cavity

The semiclassical spectrum of a massless scalar
is exact for a number of manifolds without
boundary B9 and the definition of the SCE by the
RHS of Eq.(l) coincides with the Casimir energy
of zeta-function regularization in these cases. It
also is exact for massless scalar fields satisfying
periodic-, Neumann- or Dirichlet- boundary con-
ditions on parallelepipeds[EAAEH as well as for
some tessellations of spheres[ZEEAETN. In &) the
semiclassical approximation was argued to give
the leading asymptotic behavior of the Casimir
energy whenever the latter diverges as the ra-
tio of two relevant lengths vanishes. All these
criteria do not apply to the Casimir self-stress
of a spherical cavity first considered by Boyer[H].
The latter is an integrable system, but the semi-

2This is conceptually not so different from considering only
the contribution of topologically non-trivial ”"instanton”
sectors to the vacuum energy of a field theory.

classical spectrum is only asymptotically correct.
There furthermore is no ratio of lengths in which
one might hope to obtain an asymptotic expan-
sion. One therefore cannot expect the semiclas-
sical approximation to be exact in this case. It
nevertheless turns out to be surprisingly accurate.
The SCE is obtained by performing the integrals
of Eq.(Hll) in stationary phase and has a very trans-
parent interpretation in terms of periodic orbits
within the cavity only. The sign of the SCE of
a spherical cavity in particular will be quite triv-
1ally established and the good agreement supports
the conjecture that the contribution from exte-
rior modes mainly serves to cancel the ultra-violet
divergences from the interior modes in the field
theoretic approach[EAEd]. The observed discrep-
ancy of 1% to the field-theoretic results probably
can be attributed to the error in the semiclassical
estimate of low-lying eigenvalues of the Laplace
operator — which is of similar magnitude. Since
boundary conditions for the electromagnetic field
never are ideal, many corrections of even greater
magnitude would be required to describe a more
realistic situation.

The electromagnetic Casimir energy of any
closed cavity with a smooth and perfectly metallic
boundary may be decomposed into the contribu-
tion from two massless scalar fields — one satis-
fying Dirichlet’s, the other satisfying Neumann’s
boundary condition on the surface[El]. Because
the surface is ideally thin and metallic, contribu-
tions to the spectral density from arbitrarily short
closed paths that reflect off (either side of) the
surface cancel each other. Semiclassically there
is no (potentially divergent) local contribution to
the Casimir energy from such an idealized surface
in the electromagnetic case — its local surface ten-
sion in fact vanishes[ZlEA]. Note that this cancel-
lation is special for the electromagnetic field and
in general does not occur for a massless scalar
field satisfying Neumann or Dirichlet boundary
conditions on a spherical surface[EREAED. How-
ever, the following semiclassical argument indi-
cates the absence of ultraviolet divergent contri-
butions proportional to the ”area” of an infinites-
imally thin (d — 1)-dimensional surface: barring
other scales, the local contribution from a small
surface element dA to the surface divergence is



proportional to hcf(R;/R;)dA/R?, where R is
the principal (local) radius of curvature and f
is a dimensionless function of ratios of the lo-
cal curvatures only. The radii of curvature for
closed and arbitrary short classical paths in the
interior and exterior that reflect just once off the
same point on the infinitesimally thin surface are
of equal magnitude but of opposite sign, regard-
less of whether Neumann or Dirichlet boundary
conditions are imposed at the surface. The diver-
gent surface contributions from inside and outside
the infinitesimally thin surface [with the same
boundary condition on both of its sides] thus can-
cel precisely when d is odd. For spherical sur-
faces this cancellation has been explicitly shown
in ref.[B2]. In three dimensions, finite Casimir
energies have also been explicitly obtained for
scalar fields and an infinitesimally thin cylindri-
cal cavity [ERJEAJER]. The previous argument indi-
cates that in odd dimensions surface divergences
cancel locally for any infinitesimally thin (and
sufficiently smooth) boundary. Tt does not de-
pend on the shape of the (smooth) boundary nor
on whether Dirichlet or Neumann boundary con-
ditions hold.

The only subtraction in the spectral density re-
quired for a finite Casimir energy in the electro-
magnetic case with idealized metallic boundary
conditions is the Weyl contribution proportional
to the volume of the sphere. The latter corre-
sponds to ignoring the m = (0,0, 0) contribution
to the sum in Eq.(ll. The remaining difficulty in
calculating the SCE of an integrable system is a
convenient choice of action-angle variables. For
a massless scalar in three dimensions satisfying
boundary conditions with spherical symmetry, an
obvious set of actions is the magnitude of angu-
lar momentum, Is = L, one of the components
of angular momentum /s = L, and an action [y
associated with the radial degree of freedom.

Since the azimuthal angle of any classical orbit
is constant, the energy F = H(I1, 1) of a mass-
less particle in a spherical cavity of radius R does
not depend on Is = L,. In terms of the previous
choice of actions, the classical energy is implicitly

given by,
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The branches of the square root and inverse cosine
in Eq.(@) are chosen so that I; is positive. It is
convenient to introduce dimensionless variables

A=2ER/(he) and z=cla/(ER), (3)

for the total energy (in units of hc¢/(2R)) and
the angular momentum (in units of FR/c) of an
orbit. Note that z € [0,1] and that the semi-
classical regime formally corresponds to A > 1,
i.e. to wavelengths that are much less than
the dimensions of the cavity. Using Eq.([@ and
the definitions of Eq.[@ the angular frequency
of the radial motion is w™' = (9E/0)~! =
Ry/1—(cI2/(ER))?/(mc) = (R/me)v/1 — 22,

With the help of Eq.(@ and the definitions
of Eq.(@, the semiclassical expression in Eq.(Hl)
for the Casimir energy of a massless scalar field
satisfying Neumann or Dirichlet boundary condi-
tions on a spherical surface becomes,
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The integral over I3 has here been performed
in stationary phase approximation. Because the
Hamiltonian does not depend on I3, only peri-
odic orbits with mz = 0 contribute[ZH] in station-
ary phase. Since —Iy < I3 < [, one has that
fd[g = 21, = Az. The factor 215 accounts for
the 2(1 4+ 1/2)-degeneracy of a state with angular
momentum L = {+1/2 = I5]. By taking (4 times)
the real part in Eq.(l) one can restrict the sum-
mations to non-negative integers and choose the
positive branch of the square root- and inverse
cosine- functions in the exponent®. The Keller-
Maslov index 8(n, m) of a classical sector depends

3The primed sum now implies half the summand if one of
the integers vanishes as well as the absence of the m =
n = 0 term.



on whether Neumann or Dirichlet boundary con-
ditions are satisfied on the spherical shell and will
be determined presently.

For positive integers m and n, the phase of the
integrand in Eq.(Hl) is stationary at z = zZ(n,m) €
[0, 1] where,

0 = —narccos(z) +mm

= ZzZ(n,m)=cos(mw/n), n>2m>1. (5)

Restrictions on the values of m and n arise be-
cause arccos(z) € [0,7/2] on the chosen branch.
The phase is stationary at classically allowed
points only for sectors with n > 2m > 1. Semi-
classical contributions to the integrals of other
sectors arise due to the endpoints of the z-
integration at z = 0 and z = 1 only. These
”diffractive” contributions are of sub-leading or-
der in an asymptotic expansion of the spectral
density for large A. Note that m — m+4n amounts
to the choice of another branch of the inverse co-
sine.

The classical action in sectors with stationary
points is,

Sei(n,m) = hAnsin(mnr/n) (6)
= (E/c¢)2nRsin(mr/n) = (E/c)L(n,m) ,

where L(n,m) is the total length of the classi-
cal orbit. Some of these classical periodic orbits
are shown in Fig. 1. The integer m in Eq.(l)
gives the number of times an orbit circles the ori-
gin. The integer n > 1 gives the number of times
an orbit touches the spherical surface. As indi-
cated in Fig. 1, the set of classical periodic orbits
in the (n,m)-sector form a caustic surface and a
double covering is required for a unique phase-
space description[BH]. The two sheets are joined
at the inner caustic [indicated by a dashed cir-
cle in Fig. 1] and at the outer spherical shell of
radius R. Every orbit that passes the spherical
shell n times also passes through the caustic n
times. The cross-section of a bundle of rays is
reduced to a point at the spherical caustic sur-
face. The caustic thus is of second order and as-
sociated with a phase loss of 7 every time 1t is
crossed. At each specular reflection off the outer
shell Dirichlet boundary conditions require an ad-
ditional phase loss of m whereas there is no phase

change for Neumann boundary conditions. Alto-
gether the Keller-Maslov index of sector (n,m)
depends on n only and is given by,

0, for Dirichlet b.c.
Bln,m) = { 2n, for Neumann b.c. (7)

For smooth surfaces on which the electromag-
netic fields satisfies (ideal) metallic boundary con-
ditions, the electromagnetic Casimir energy can
be viewed as due to two massless scalar fields,
one satisfying Dirichlet and the other Neumann
boundary conditions[Zi]. Due to the Keller-
Maslov phases of Eq.(@) only sectors (n,m) with
even n = 2k > 2m > 2 contribute[El to the SCE
in leading order of the asymptotic expansion for
large A.

N AN

AN

g

a) b)

Fig.1: Classical periodic rays of a ball and solid cylin-
der. a) The shortest primitive rays corresponding to
winding numbers (n,m) € {(2,1),(3,1),(4,1)}. b)
Primitive rays to winding numbers (n,m) = (5,1)
and (5, 2). Caustic surfaces are shown as thin circles.
The dashed part of any trajectory is on one sheet and
its solid part on the other of a two-sheeted covering
space. The ”"phase space” of the (5,2) sector is in-
dicated the hatched area. Note that caustics are of
24 order for a spherical cavity but of 1°* order for a
cylindrical one.

Note that sectors with m = 0 or n = 0 have
vanishing classical action and do not contribute
to the SCE. Eq.(l) implies that extremal paths
in the (n > 0, m = 0) sectors have maximal angu-
lar momentum 1 = z = l¢/(F R). These are great
circles that are wholly within the spherical shell
in a plane perpendicular to the one under con-
sideration, i.e. classical orbits with [3 = L, = 0.



Because the measure of the z-integral vanishes at
z = 1 like /1 — z these classical paths are ex-
tremal but not stationary. This can also be seen
by expanding the exponent in Eq.(ll) about the
stationary point. For (n > 0,m > 0) the curva-
ture of the exponent at zZ(n,m) is finite,

32
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whereas it diverges in sectors with m = 0. The
behavior of the exponent for z ~ 1 in this case is,

VI—z2—zarccos(z) = 22(1-2)*2+O((1-2)*/?) .(9)

Quadratic fluctuations about the classical orbit
with m = 0 thus have vanishing width and these
sectors do not contribute in stationary phase ap-
proximation. To leading semiclassical accuracy,
the Casimir energy of a spherical cavity with an
ideal metallic boundary therefore 1s,
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This semiclassical estimate is only about
1% larger than the best numerical value[f]
0.04617...hc¢/R for the electromagnetic Casimir
energy of a spherical cavity with an infinitesimally
thin metallic surface. Note that the contribution
from the (2k, k) sectors had to be considered sep-
arately in Eq. () since the measure dzz vanishes
at the stationary point z(2k, k) = cos(n/2) = 0
of the integrand, which is an endpoint of the in-
tegration domain. As can be seen in Fig. la),
the classical rays of (2k, k)-sectors go back and
forth between antipodes of the cavity and pass
through its center — they have angular momen-
tum L =0 = Z(2k, k).

The shortest primitive orbits give somewhat
less than half (1/(167) ~ 0.02) of the total SCE
of the spherical cavity — much less than the 92%

they contribute to the Casimir energy of paral-
lel plates. The main reason is that contributions
only drop off as 1/k? rather than like 1/k* as
for parallel plates. The length of an orbit in the
(4, 1)-sector (the inscribed square in Fig. 1a) fur-
thermore is just a factor of /2 longer than an
(2, 1)-orbit [which in turn is a factor of 1/v/2
shorter than an (4,2)-orbit]. To estimate the
magnitude of the contribution of any particular
sector one has to take the available phase space
as well as the ray’s length into account. Thus, al-
though the length of a (2k, 1)-orbit tends to 27 R
for k — oo, the associated phase-space (essen-
tially given by the volume of the shell between
the boundary of the cavity and the inner caustic)
decreases like 1/k2. This accounts for the rela-
tively slow convergence of the sum in Eq.(El). To
achieve an accuracy of 107, the first 50 terms of
the sum were evaluated explicitly and the remain-
ing contribution was estimated using Richard-
son’s extrapolation method.

4. The Cylindrical Cavity

The example of a spherical cavity shows that
the SCE in some instances is surprisingly ac-
curate. However, there evidently are systems
without periodic classical orbits, such as the two
perpendicular planes investigated in[Ed], or the
Casimir pendulum of[l9]. None of these systems
isintegrable, and although there are no stationary
periodic classical rays, periodic rays of extremal
(shortest) length do exist. Semiclassically, such
extremal periodic rays are associated with diffrac-
tion[BIET. The inclusion of diffractive contribu-
tions in the semiclassical estimate of Casimir en-
ergies has so far only been attempted for a system
of spheres[Ed]. Below it will become evident that
diffractive contributions also play a central role
in the Casimir energy of a cylindrical cavity.

The Casimir energy of a dilute cylindrical gas
of atoms was found to vanish in[B3. A num-
ber of calculations have confirmed that there is
no contribution up to second order in the re-
flection coefficients for dielectrics[EIEAES] and
for media where the speed of light on either
side of an infinitesimally thin cylindrical bound-
ary is the same[E3ZN. Balian and Duplantier



even conjectured that the Casimir energy of an
ideal metallic cylindrical cavity may vanish [
to all orders of the multiple reflection expan-
sion. The non-vanishing Casimir energy of an
ideal metallic cylindrical cavity[iEd] was subse-
quently reanalyzed in the framework of zeta-
function regularization. It was confirmed that
the Casimir energy of an ideal metallic cylinder
only vanishes to leading order and that higher
orders in the reflection coefficients all give a non-
vanishing contribution[id]. However, some math-
ematical prowess is required to analytically prove
the lowest order cancellation in the field-theoretic
approach[Ed]. That a number of separate contri-
butions should conspire to a null result without
apparent physical reason has been considered by
many as somewhat "mysterious” 4. The sus-
picion that the reason could be purely geometrical
is nourished by the fact that the finite part of the
pair-wise Van DerWaals interaction energy of a
dilute gas of atoms vanishes for a cylinder[EilEd]
but not for other geometries. However, a careful
perturbative analysis reveals that the interaction
energy of any real dilute cylindrical gas of atoms
includes a logarithmic divergence in addition to
divergent contributions proportional to the vol-
ume and surface area of the cylinder[Ed]. The
subtraction of this logarithmic divergence gener-
ally 1s ambiguous and the Casimir energy of a
cylindrical cavity depends sensitively on proper-
ties of its boundary[Bd] in the ultraviolet. A par-
ticular boundary (say that of an infinitesimally
thin cylindrical shell separating media with the
same speed of light) thus may conceivably have a
finite (negative) Casimir energy, whereas a very
small modification of this boundary (say in its
thickness) leads to a logarithmic divergence.

The calculation below supports this possibility.
The semiclassical contribution to the Casimir en-
ergy due to any periodic classical ray i1s found
to vanish for a cylinder regardless of the reflec-
tion coefficients (without absorption). The SCE
of a cylindrical cavity vanishes to all orders in
the reflection coefficients for the same reason that
the SCE of a spherical cavity is positive — due
to relatively obvious optical phases. The semi-
classical point of view thus gives a straightfor-
ward and physically acceptable explanation for

the otherwise mysterious cancellations. It also
indicates that any additional phase change at the
boundary will destroy this delicate mechanism.
The finite electromagnetic Casimir energy[ld of
a cylinder with idealized metallic boundary condi-
tions on the other hand is more difficult to explain
semiclassically. However, contrary to a spheri-
cal cavity and in agreement with the perturba-
tive result of[EH, the semiclassical analysis of the
Casimir energy of a cylindrical cavity also encoun-
ters logarithmic divergent contributions. The lat-
ter are ”diffractive” end-point contributions that
are ignored by the stationary phase approxima-
tion. There is reason to believe[EAEH| that the
subtraction of the logarithmic divergence by the
contribution from ”exterior” modes is the reason
for the finite Casimir energy of an idealized metal-
lic cylinder[iEa].

Let us now turn to the calculation of the elec-
tromagnetic SCE of a long cylindrical cavity, or
rather a very thin torus with one perimeter L
that is much larger than the other, L > 27R.
The latter is an integrable system. In the limit
R/L — 0, the only classical trajectories of rele-
vance are again those of Fig. 1 and the SCE of a
long cylindrical cavity can be obtained along sim-
ilar lines as that of a spherical one — with some
important modifications. Due to the toroidal
symmetry of the (long) cylinder, the third ac-
tion I3 = Lpr/(27) in this case is proportional
to the conserved momentum p; along the axis
of the (thin) cylinder and in Eq.(Hl) the energy F
must be replaced by \/E? — (2mcI3/L)?. The sec-
ond action furthermore is the angular momentum

rather than just its magnitude. It again is conve-
nient to consider dimensionless quantities for the
fraction —1 < 2 < 1 of the total momentum along
the axis of the cylinder, for the ratio —1 <z <1
of the angular momentum to the maximal pos-
sible angular momentum of a photon within the
cavity and for its energy 0 < A < oo in units of

he/(2R),
cls 2mels
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Proceeding as in the spherical case, the semiclas-

sical expression in Eq.(ll) for the SCE of a mass-
less scalar field satisfying Neumann or Dirichlet

A=2ER/(ke), z = (11)




boundary conditions on a cylindrical surface be-
comes,
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The contribution from periodic orbits that wind
around the perimeter of the torus is negligible
in the R/L — 0 limit and has been omitted
in Eq.(E8). The phase of the integrand in Eq.([E8)
is stationary at & = 0 (corresponding to pr = 0)
and zZ(n,m) given in Eq.([l). Since the domain
of integration for the z-variable differs from the
spherical case, sectors with 1 < m < n — 1 have
non-trivial stationary points. The classical action
of an (n, m)-sector is the same as for the spheri-
cal cavity and is given by Eq. (. The fluctuations
about such a classical ray on the other hand are
quite different for cylindrical and spherical cavi-
ties. To quadratic order in the fluctuations about
the stationary point = 0, Z(n, m), the action for
the cylinder is

S(n,m) ~ n|sin ?(1—2—2)4_%

2sin 7
The unconstrained Gaussian integrals over z —
Z(n,m) and # result in a factor of 27/(nA) in
stationary phase approximation. Note that the
phases of +7/4 associated with the two Gaussian
integrals cancel in this case. Performing also the
integral over A in Eq.(IBl) finally gives,

oo n—1
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The crucial difference to the previous case of a
spherical cavity is the phase factor of —i. It arises
because the fluctuations of a cylindrical system
have one fewer zero-mode than for a spherical one.
[The Hamiltonian of a spherical cavity does not
depend on I3 « L,, whereas it does depend on
I3 x pg, for the cylindrical cavity. The 2 x 2 Hes-
sian matrix H;; = 0°H/0L;0I; with 3 > 4,5 > 1
has one zero mode for a spherical cavity, but none
in the cylindrical geometry. One can show[Zd)

L(13)

that this difference in zero modes implies an ad-
ditional phase loss of w/2 for the periodic rays of
a cylindrical cavity.] This additional phase loss
ultimately is responsible for the vanishing of the
SCE of a cylindrical cavity. To verify this we only
need to compute the Keller-Maslov index (n, m)
for Neumann and Dirichlet boundary conditions.
The caustics of the cylindrical cavity are of first
order rather than second: the cross-section of a
bundle of rays becomes one-dimensional at the
caustic — it is focussed to a line rather than a
point. Taking into account the phase retardation
by m/2 every time a ray passes a first order caus-
tic, the analogous result to Eq.(@) for a cylindri-
cal cavity is,

B, m) = {

Contributions from paths with Neumann and
Dirichlet boundary conditions and an odd num-
ber of reflections cancel each other and, as for
the spherical cavity, only sectors to even n =
2k = 2,4,... contribute to the electromagnetic
SCE [this is quite generally so[]]. Summing con-
tributions to the electromagnetic Casimir energy
from the two scalars in Eq.(E) then gives the
null result

3n, for Dirichlet b.c.
n, for Neumann b.c.

(15)

bl

oo 2k-—1

helL
EM _ § : § : —
bl = Sonre e =0. {8)

SlIl2 mﬂ'

In Eq.(B@) every periodic orbit gives a van-
ishing contribution to the SCE of a cylindrical
cavity. The cancellation evidently depends on
a delicate relation between the optical phases.
It is interesting that a small additional phase
loss at each reflection off the surface results in
anegative SCE for a cylindrical cavity, but that
the Casimir energy vanishes as long as the above
phase relations hold — even if the magnitude of
the reflection coefficients 1s less than unity. The
SCE in this sense is in line with previous results
for FEIEAEART| the Casimir energy of a dilute di-
electric cylinder, and in fact supports the conjec-
ture of Balian and Duplantier in[Zf]. The non-
vanishing Casimir energy of a cylindrical cavity
with ideal metallic boundary conditions on the
other hand is not so easily explained by this semi-
classical point of view.



Some insight is gained by noting that the con-
tribution of any sector to the SCE of a cylin-
drical cavity in Eq.(El) — even sectors with non-
trivial periodic classical paths — diverges. This is
in marked contrast to the spherical case, where
the contribution from sectors with non-trivial pe-
riodic classical paths (characterized by n > 2m >
1) is finite. The divergence is most readily made
explicit by scaling Av/1 — 22 — X in the integral
of Eq.(IB&). Without ultraviolet cutoff, the result-
ing z-integral in this case formally gives the fac-

tor,

[ n

whose divergence is due to the behavior of the
integrand as  — £1. It may be regulated by in-
troducing an ultraviolet cutoff {2 of some sort for
the energy integral [that is in the integral over
Al. As may be seen from Eq.(I&l), the regulated
integral will always include terms that are loga-
rithmically divergent as €2 — oo. The subtrac-
tion of a logarithmic divergence depends on de-
tails of the cutoff and thus is sensitive to ultra-
violet properties of the boundary[Es]. The evalu-
ation of (divergent) integrals in stationary phase
can be consideredone way of subtracting the di-
vergence. Because the divergence is logarithmic,
the subtraction 1s by no means unique in this
case. The presence of such a logarithmic diver-
gence for cylindrical cavities was first emphasized
by Barton[Ed] in a perturbative treatment of a di-
lute gas of atoms, although 1t also is evident in the
contribution from interior modes to the Casimir
energy of an ideally metallic cylinder[Ed].

The foregoing is compatible with previous
results[[CAEAM that the Casimir energy of a cylin-
drical cavity is finite if the speed of light inside
and outside itseinfinitestmally thin boundary sur-
face are the same. It for instance is negative for
idealized metallic boundary conditions[lEd. The
Casimir energy in this case apparently does not
suffer from any logarithmic divergences (or equiv-
alently, from any pole ambiguities in zeta func-
tion regularization). The Casimir energy is fi-
nite for the infinitesimally thin boundary, because
the logarithmic divergent contribution from inte-
rior modes is precisely cancelled by the similarly

logarithmic divergent contribution from exterior
modes. Since the boundary is infinitesimally thin
and the speed of light is the the same, a precise
cancellation is possible. The divergence reappears
for a dielectric cavity in vacuum with a lower
speed of light in the dielectric[B4]. This occurs
for a spherical as well as for a cylindrical cavity,
but with an important difference: the divergence
in the spherical case is not logarithmic and may
be unambiguously subtracted[H]. The subtraction
of the logarithmic divergence in the Casimir en-
ergy of the cylindrical cavity on the other hand
requires some energy scale that describes proper-
ties of the boundary in the ultraviolet. An anal-
ogous problem would be encountered for an ideal
metallic boundary of finite thickness[E] and in
fact for almost any small deviations from an ide-
alized and infinitesimally thin cylindrical bound-
ary between two media with identical speed of
light. Paradoxically, defining the Casimir energy
of a cylindrical cavity in a manner that does not
depend on the detailed ultraviolet properties of
its boundary appears all but impossible.

It perhaps is worth mentioning in this regard
that the Casimir energy of a massless scalar
excitation on the two-dimensional spherical or
toroidal boundaries is well-defined. For a spher-
ical shell and a very thin torus, this Casimir en-
ergy has the same dependence on the dimensions
as the Casimir energies of the corresponding cav-
ities. For a two-sphere (S2) and a very thin torus
Ty with L > 27 R these Casimir energies are

Es, = 0 (18)
heL heL
Note that these Casimir energies of a mass-
less scalar on two-dimensional spherical and
toroidal  surfaces are exactly reproduced
semiclassically [ZAESA]. The presence of scalar
surface modes therefore does not change the
Casimir energy of a spherical cavity but could
very well contribute to that of a cylindrical one.
The Casimir energy of a massless degree of free-
dom on a torus not only i1s of the same form,
but also of the same sign and order of magnitude
as the Casimir energy of an ideal metallic cylin-
drical cavity[EJEd]. Such a contribution from
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massless surface modes thus might be important
for a cylindrical cavity and would furthermore be
difficult to separate from the contribution due to
cavity modes.

5. Discussion

The semiclassical approximation to the Casimir
energy of a cavity to leading order includes only
contributions from quadratic fluctuations about
stationary periodic classical rays. Since all peri-
odic rays lie in the interior, the SCE of a con-
cave cavity to leading order depends on the exte-
rior only indirectly through reflection coefficients.
Periodic classical rays furthermore are of finite
length. Their contribution to the Casimir energy
thus is ultraviolet finite. However, this approx-
imation is sensible only if UV-divergent contri-
butions to the vacuum energy can be subtracted
unambiguously from the spectral density. Log-
arithmically divergent contributions to the vac-
uum energy require a subtraction scale[E=]. The
latter is a clear indication that the subtraction
cannot be universal since it depends sensitively
on the UV-properties of the boundary. Small
changes in the boundary conditions in this case
do not necessarily correspond to small changes
in the Casimir energy. The local properties of
a boundary the vacuum energy can be sensitive
to apparently include its thickness: whereas the
Casimir energy of a cylindrical cavity with an
ideal and infinitesimally thin metallic boundary
is finite[&4] to any order in the (real) reflection
coefficients[ll], a logarithmic dependence on the
cutoff appears in more realistic situations[EEd].
An ambiguous subtraction is also required in the
semiclassical approximation. The absence of any
logarithmic divergence for the infinitesimally thin
boundary apparently is due to a cancellation by
exterior modes. Such a cancellation of logarith-
mic singularities can occur when exterior and in-
terior modes depend on precisely the same scale,
the radius R of the cylindrical cavity in this case.
Although the two logarithmic divergences (each
proportional to heL/R? for dimensional reasons)
cancel 1n the idealized situation, they would not
if the boundary is of finite thickness.

We considered only the semiclassical Casimir

energy (SCE) of a spherical and of a toroidal cav-
ity with ideal metallic boundary conditions, that
is with real reflection coefficients of unit magni-
tude. These are integrable systems and the SCE
was derived from the ”"dual” description of the
spectral density in terms of periodic paths on in-
variant tori[Z3Ed. The winding numbers of a pe-
riodic orbit are dual to the quantum numbers of
a mode. In stationary phase approximation the
SCE of a spherical cavity is positive and coincides
with the field theoretic value for an infinitesimally
thin metallic boundary to about 1%. The calcula-
tion 1s rather short and straightforward and leads
to the convergent sum of Eq.(l). Each term in
this sum may be interpreted as the contribution
from a class of periodic rays. A few the shorter
primitive periodic rays are depicted in Fig. 1. The
contribution from any sector with classical peri-
odic rays is finite in this case. Divergent contri-
butions are restricted to sectors with no classical
rays.

The contribution from periodic orbits to the
SCE of a cylindrical cavity with an ideal metal-
lic boundary on the other hand vanishes to all
orders in the number of reflections. This occurs
due to an overall phase change by an odd multi-
ple of w/2 for any classical periodic ray. Restrict-
ing to just two reflections, this null result agrees
with field theoretic calculations for infinitesimally
thin metallic boundaries[ A7 EAEH]. The van-
ishing SCE appears to support the conjecture of
Balian and Duplantier that the Casimir energy
of a metallic cylindrical cavity may vanish. How-
ever, contrary to the spherical case, the contribu-
tions of any classical sector to the SCE of a cylin-
drical cavity diverges. Without subtraction of the
UV-divergent part, the (finite) semi-classical con-
tribution to the vacuum energy we obtained is not
very meaningful. Unfortunately the divergence of
the integral in Eq.([&) includes a logarithmic de-
pendence on the cutoff. The subtraction of UV-
divergent contributions to the Casimir energy of
a cylinder thus is sensitive to a scale and can-
not be achieved in a universal fashion. The log-
arithmic dependence on the cutoff was first ob-
served by Barton[Ed] in his perturbative calcu-
lation of the vacuum energy for a (dilute) gas
of cylindrical shape to lowest order in the fine



structure constant. Semiclassically this would
also correspond to considering the contribution
from rays with only two reflections (n = 2). That
the UV-subtractions are fragile and depend cru-
cially on the UV-properties of the boundary is
also observed when the speed of light within and
outside an infinitesimally thin cylindrical bound-
ary differ[B8]. In the electromagnetic case, the
logarithmic divergences of exterior and interior
contributions to the vacuum energy of a metallic
cylinder cancel for an infinitesimally thin metallic
boundary[Ed]. However, they in general cannot
be unambiguously subtracted [Ed].

These examples of a spherical- and cylindrical
cavity show that the SCE is quite reasonable and
is rather simple to calculate when the Casimir
energy is robust, that is, when the subtractions
do not depend on fine-tuning of the ultraviolet
behavior of the boundary. The classical periodic
paths that contribute to the SCE of a concave
cavity in stationary phase approximation lie en-
tirely within the cavity. Their contribution de-
pends on the exterior of the cavity through re-
flection coefficients only. It has been argued for
some time that a Casimir energy obtained with-
out explicit inclusion of exterior modes (as for a
parallelepiped [EAJEd]) is all but meaningless[iz].
The criterion favored here[ElZH considers any
definition of a Casimir energy reasonable (and
in principle physically realizable) in which the
UV-divergences of the vacuum energy have been
subtracted in a universal fashion, that is with-
out explicit reference to UV-properties of the
boundary. The subtraction may (and in gen-
eral will) include divergent contributions from ex-
terior modes. The Casimir energy of a paral-
lelepiped can be considered a case in point: as
Power[BH] did for just two slabs, one can always
assemble (at most 8) parallelepipeds to a cube of
fixed dimensions — the Casimir energy of an in-
dividual parallelepiped [EEH] in this case reflects
changes in the vacuum energy of the whole cube
as the four dividing planes are moved adiabat-
ically. By moving interior surfaces of the cube
(that in principle could have finite thickness), one
measures only that finite part of its vacuum en-
ergy that depends on the dimensions of the indi-
vidual parallelepipeds. By contrast, it is difficult
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to imagine that global changes in a vacuum en-
ergy are measurable (or even physically relevant)
if their finiteness depends crucially on local char-
acteristics of the system[ZH]. Perhaps somewhat
surprisingly, the electromagnetic Casimir energy
of a very long cylindrical cavity does not appear
to be robust in this sense, whereas the electro-
magnetic Casimir energy of a spherical cavity is.

Apart from relating Casimir energies to opti-
cal properties, one of the advantages of a semi-
classical description would be the possibility to
model more realistic (but robust) physical sys-
tems. The previous considerations are readily ex-
tended to dielectrics by using appropriate com-
plex and in general frequency-dependent reflec-
tion coefficients. In the case of dielectric slabs
Milton has shown[l) that Lifshitz’s theory [EHJEH
may be reproduced in this manner. Finite tem-
perature is incorporated B by allowing periodic
rays to also wrap around a fictitious periodic ex-
tra dimension of circumference he/(kT). Finite
temperature corrections thus are small if some
classical periodic paths are much shorter than this
circumference. At room temperature the length
of a periodic ray increases by of about 7.6 mi-
crons every time it winds about the temperature
direction. Temperature corrections therefore are
tiny for most nanometer scale experiments® but
could be of greater interest in some astrophysical
considerations (3°K = Imm). Corrections due to
surface roughness generally will be more impor-
tant in technological applications. Many classical
models for diffusive reflection from rough surfaces
exist and Lambert’s Law is easily incorporated in
the semiclassical approach by appropriate reflec-
tion coefficients. The dependence on the wave-
length perhaps can be modelled by a stochastic
term of the action that accounts for fluctuations
in the length of a classical periodic orbit upon
reflection from rough surfaces. Apart from an
average change in length, this leads to a damping
term of the form —(AL E/hc)?/2 in the classical
action, where (AL)? is the variance in the length
of the periodic orbit. Assuming that this variance
is itself proportional to the length of the orbit,

4The claim that this correction has been measured to
sufficient accuracy[ll] to distinguish between different ap-
proaches has recently been disputed[&3].
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surface roughness can semiclassically perhaps be
modelled by the modified dispersion

ep(E) = E+icE?/(he) | (19)

where ¢ is a typical length scale for the (stochas-
tic) roughness of the surface. The predominant
effect of the modified dispersion of Eq. (Il is that
contributions to the Casimir energy from wave
lengths A < ¢ are very much suppressed. A sim-
ilar conclusion may be drawn from a recent and
considerably more sophisticated analysis[Ed)].
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