
ar
X

iv
:h

ep
-t

h/
06

04
11

9 
v1

   
17

 A
pr

 2
00

6 Semilassial Eletromagneti Casimir Self-EnergiesMartin Shaden�Rutgers University, 211 Smith Hall, 101 Warren St., Newark, NJ 07102, U.S.A.The eletromagneti Casimir energies of a spherial and a ylindrial avity are analyzed semilassially. The�eld theoretial self-stress of a spherial avity with ideal metalli boundary onditions is reprodued to betterthan 1%. The subtrations in this ase are unambiguous and the good agreement is interpreted as evidene that�nite ontributions from the exterior of the avity are small. The semilassial eletromagneti Casimir energyof a ylindrial avity on the other hand vanishes to any order in the real reetion oeÆients. The Casimirenergy of a ylindrial avity with a perfet metalli and in�nitesimally thin boundary on the other hand is �niteand negative[17℄. Contrary to the spherial ase and in agreement with Barton's perturbative analysis[31℄, thesubtrations in the spetral density for the ylinder are not universal when only the interior modes of are takeninto aount[43℄. The Casimir energy of a ylindrial avity therefore depends sensitively on the physial natureof the boundary in the ultraviolet whereas the Casimir energy of a spherial one does not. The extension of thesemilassial approah to more realisti systems is skethed.1. INTRODUCTIONDemonstrating that the olletive interationof atomi systems in some ases have marosopionsequenes, Casimir obtained the now famousattrative fore between two neutral metalliplates[1℄ in terms of the boundary onditionsthey impose on the eletromagneti �eld. Halfa entury later, his predition has been veri�edexperimentally[2℄ to better than 1%.Twenty years after Casimir's predition for twoparallel plates, Boyer alulated the zero-pointenergy of an ideal onduting spherial shell[3℄.Contrary to intuition derived from the attrationbetween two parallel plates, the sphere tends tobe expanded. Boyer's result has sine been im-proved in auray and veri�ed by a number of�eld theoreti methods[4,5,6,7,8℄ { even thoughthere may be little hope of observing this e�etexperimentally in the near future[9℄.Sine �eld theoreti methods require expliitor impliit knowledge of avity frequenies, theyhave predominantly been suessfully employedto obtain the Casimir energies of lassiallyintegrable systems. Thus, in addition to a�email: mshaden�andromeda.rutgers.edu

spherial avity, the eletromagneti Casimirenergies of dieletri slabs[10,11,12℄, metalliparallelepipeds[13,14,15,16℄ and long ylinders[7,17,18,19,20℄ have been omputed in this manner.However, most systems are not integrable andoften annot even be approximated by integrablesystems. It thus is desirable to develop reli-able methods for estimating the Casimir ener-gies of lassially non-integrable and even haotisystems. Balian, Bloh and Duplantier alu-late Casimir energies based on a multiple satter-ing approximation to the Green's funtion[13,21℄.This approah does not require knowledge of thequantum mehanial spetrum and the geomet-ri expansion in priniple is exat for suÆientlysmooth and ideally metalli avities. However,ultra-violet divergent ontributions have to besubtrated at every order of the multiple sat-tering expansion. The relative importane ofthe �nite remainder at eah order in the multi-ple sattering expansion is hard to assess a pri-ori and it in pratie is often diÆult to arrythe expansion beyond the �rst few terms. In[22℄a semilassial method was proposed to esti-mate (�nite) Casimir energies. It is based onGutzwiller's trae formula[23℄ for the response1



2funtion and is suitable for Casimir energies ofhyperboli and haoti systems[22,24,25℄ with iso-lated lassial periodi orbits. Although not ex-at in general, the semilassial approximationas-soiates the �nite (Casimir) part of the vauumenergy with optial properties of the system. Itaptures aspets of Casimir energies that havebeen puzzling for some time[26℄. Path integralmethods[27,28,29,30℄ in priniple allow one to ob-tain Casimir interations between disjoint bodiesto arbitrary preision. Due to unresolved renor-malization problems, these methods have so farnot been used to study the self stress of avities.The purpose of this artile is to estimate and ana-lyze the Casimir stress of some avities semilas-sially. To ompare with �eld theoreti resultsfor spherial and ylindrial avities, a semilas-sial method that is adapted to lassially inte-grable systems is employed. The robustness ofthe Casimir energy under small hanges of theboundary onditions turns out to be of ruialimportane for the semilassial analysis.The simpliity, transpareny and surpris-ing auray of the semilassial approxima-tion is demonstrated in Boyer's problem[3,4,5,6,7,8℄, that is in determining the eletromag-neti Casimir energy of a spherial avity withan (ideal) metalli boundary. The semilassialanalysis of this problem is an order of magni-tude simpler than any given previously. However,sine no bounds are obtained, it at present is notpossible to judge the auray of this approxima-tion without omparing to exat �eld theoretiresults[6℄. It will beome rather lear though,that the semilassial analysis is aurate enoughto infer the sign of the Casimir energy of a avityby geometri arguments when the ontributionfrom periodi orbits does not vanish. We shall seein set. 4 that periodi orbits in fat do not on-tribute to the Casimir energy of a long ylindrialavity. The somewhat surprising null-result thatthe Casimir energy of a ylinder[7,19,21,31,32,33℄vanishes to �rst order in the reetion oeÆientsthus is readily explained by geometri optis.However, the semilassial Casimir energy of aylindrial avity vanishes to all orders in the realreetion oeÆients and thus also vanishes foran ideal metalli avity. The disrepany to the

�nite �eld theoreti Casimir energy of an ideal-ized, in�nitesimally thin ylindrial boundary be-tween non-dispersive media with the same speedof light[17,18,19℄ an be traed to the presene ofa logarithmi divergene observed by Barton[31℄in his perturbative treatment of the non-ideal di-lute ase. The exat anellation of this diver-gene in the �eld theoreti approah is due to thein�nitesimal thikness of the assumed boundary {interior and exterior ontributions to the Casimirenergy in this ase depend on just one ommonsale, the radius of the ylinder.2. The Dual Piture: Casimir Energies ofIntegrable Systems in Terms of PeriodiRaysIntegrable systems may be semilassiallyquantized in terms of periodi paths on invari-ant tori[34℄ { in muh the same manner as Bohr�rst quantized the hydrogen atom. Although ingeneral not an exat transformation, lassial pe-riodi orbits on the invariant tori are dual to themode frequenies in the semilassial sense. Ap-plying Poisson's summation formula, the semi-lassial Casimir energy (SCE) due to a masslesssalar may be written in terms of lassial peri-odi orbits[23,26,35℄,E = 12Xn �h!n � UV subtrations� 12�hdXm 0e� i�2 �m Zsp dIH(I) e2�im�I=�h :(1)The omponents of the d-dimensional vetor Iin Eq.(1) are the ations of a set of properly nor-malized ation-angle variables that desribe theintegrable system. The exponent of the inte-grand in Eq.(1) is the lassial ation (in unitsof �h) of a periodi orbit that winds mi timesabout the i-th yle of the invariant torus. H(I)is the assoiated lassial energy and �m is theKeller-Maslov index[36,37℄ of a lass of periodiorbits identi�ed by m. The latter is a topologi-al quantity that does not depend on the ationsI. To leading semilassial order, the (primed)sum extends only over those setors m with las-



3sial periodi paths of �nite ation (see below).The orrespondene in Eq.(1) an only be ar-gued semilassially[23,35℄ and the integrals onthe RHS therefore should be evaluated in station-ary phase approximation (sp).Contributions to the Casimir energy from highfrequenies orrespond to those from short pe-riodi orbits in this dual piture. Divergenesdue to periodi lassial paths of vanishing length(and thus vanishing total ation) on the RHSof Eq.(1) orrespond to ultra-violet divergenesof the mode sum on the LHS of Eq.(1). If thesedivergenes an be subtrated unambiguously[26,31,38℄, the dependene of the vauum energy onmarosopi properties of the system is semilas-sially represented by ontributions due to las-sial periodi orbits of �nite ation only. Theprimed sum on the RHS of Eq.(1) indiates thisrestrition2. The (divergent) Weyl ontributionto the vauum energy from the m = (0; : : : ; 0)-setor in partiular has to be subtrated. To-gether with an evaluation of the integrals instationary phase, this de�nes the semilassialCasimir energy (SCE). To physially interpret theSCE, one has to onsider the impliit subtrationsin the spetral density[21,26,31℄.3. The Spherial CavityThe semilassial spetrum of a massless salaris exat for a number of manifolds withoutboundary[39℄ and the de�nition of the SCE by theRHS of Eq.(1) oinides with the Casimir energyof zeta-funtion regularization in these ases. Italso is exat for massless salar �elds satisfyingperiodi-, Neumann- or Dirihlet- boundary on-ditions on parallelepipeds[14,16,26℄ as well as forsome tessellations of spheres[26,40,41℄. In [22℄ thesemilassial approximation was argued to givethe leading asymptoti behavior of the Casimirenergy whenever the latter diverges as the ra-tio of two relevant lengths vanishes. All theseriteria do not apply to the Casimir self-stressof a spherial avity �rst onsidered by Boyer[3℄.The latter is an integrable system, but the semi-2This is oneptuallynot so di�erent from onsideringonlythe ontribution of topologially non-trivial "instanton"setors to the vauum energy of a �eld theory.

lassial spetrum is only asymptotially orret.There furthermore is no ratio of lengths in whihone might hope to obtain an asymptoti expan-sion. One therefore annot expet the semilas-sial approximation to be exat in this ase. Itnevertheless turns out to be surprisingly aurate.The SCE is obtained by performing the integralsof Eq.(1) in stationary phase and has a very trans-parent interpretation in terms of periodi orbitswithin the avity only. The sign of the SCE ofa spherial avity in partiular will be quite triv-ially established and the good agreement supportsthe onjeture that the ontribution from exte-rior modes mainly serves to anel the ultra-violetdivergenes from the interior modes in the �eldtheoreti approah[42,43℄. The observed disrep-any of 1% to the �eld-theoreti results probablyan be attributed to the error in the semilassialestimate of low-lying eigenvalues of the Laplaeoperator { whih is of similar magnitude. Sineboundary onditions for the eletromagneti �eldnever are ideal, many orretions of even greatermagnitude would be required to desribe a morerealisti situation.The eletromagneti Casimir energy of anylosed avity with a smooth and perfetly metalliboundary may be deomposed into the ontribu-tion from two massless salar �elds { one satis-fying Dirihlet's, the other satisfying Neumann'sboundary ondition on the surfae[21℄. Beausethe surfae is ideally thin and metalli, ontribu-tions to the spetral density from arbitrarily shortlosed paths that reet o� (either side of) thesurfae anel eah other. Semilassially thereis no (potentially divergent) loal ontribution tothe Casimir energy from suh an idealized surfaein the eletromagneti ase { its loal surfae ten-sion in fat vanishes[21,44℄. Note that this anel-lation is speial for the eletromagneti �eld andin general does not our for a massless salar�eld satisfying Neumann or Dirihlet boundaryonditions on a spherial surfae[45,46,47℄. How-ever, the following semilassial argument indi-ates the absene of ultraviolet divergent ontri-butions proportional to the "area" of an in�nites-imally thin (d � 1)-dimensional surfae: barringother sales, the loal ontribution from a smallsurfae element dA to the surfae divergene is



4proportional to �hf(Ri=Rj) dA=Rd, where R isthe prinipal (loal) radius of urvature and fis a dimensionless funtion of ratios of the lo-al urvatures only. The radii of urvature forlosed and arbitrary short lassial paths in theinterior and exterior that reet just one o� thesame point on the in�nitesimally thin surfae areof equal magnitude but of opposite sign, regard-less of whether Neumann or Dirihlet boundaryonditions are imposed at the surfae. The diver-gent surfae ontributions from inside and outsidethe in�nitesimally thin surfae [with the sameboundary ondition on both of its sides℄ thus an-el preisely when d is odd. For spherial sur-faes this anellation has been expliitly shownin ref.[42℄. In three dimensions, �nite Casimirenergies have also been expliitly obtained forsalar �elds and an in�nitesimally thin ylindri-al avity[18,43,48℄. The previous argument indi-ates that in odd dimensions surfae divergenesanel loally for any in�nitesimally thin (andsuÆiently smooth) boundary. It does not de-pend on the shape of the (smooth) boundary noron whether Dirihlet or Neumann boundary on-ditions hold.The only subtration in the spetral density re-quired for a �nite Casimir energy in the eletro-magneti ase with idealized metalli boundaryonditions is the Weyl ontribution proportionalto the volume of the sphere. The latter orre-sponds to ignoring the m = (0; 0; 0) ontributionto the sum in Eq.(1). The remaining diÆulty inalulating the SCE of an integrable system is aonvenient hoie of ation-angle variables. Fora massless salar in three dimensions satisfyingboundary onditions with spherial symmetry, anobvious set of ations is the magnitude of angu-lar momentum, I2 = L, one of the omponentsof angular momentum I3 = Lz and an ation I1assoiated with the radial degree of freedom.Sine the azimuthal angle of any lassial orbitis onstant, the energy E = H(I1; I2) of a mass-less partile in a spherial avity of radius R doesnot depend on I3 = Lz . In terms of the previoushoie of ations, the lassial energy is impliitly

given by,�I1 + I2 aros� I2ER� = ER s1�� I2ER�2 :(2)The branhes of the square root and inverse osinein Eq.(2) are hosen so that I1 is positive. It isonvenient to introdue dimensionless variables� = 2ER=(�h) and z = I2=(ER); (3)for the total energy (in units of �h=(2R)) andthe angular momentum (in units of ER=) of anorbit. Note that z 2 [0; 1℄ and that the semi-lassial regime formally orresponds to � � 1,i.e. to wavelengths that are muh less thanthe dimensions of the avity. Using Eq.(2) andthe de�nitions of Eq.(3) the angular frequenyof the radial motion is !�1 = (�E=�I1)�1 =Rp1� (I2=(ER))2=(�) = (R=�)p1� z2.With the help of Eq.(2) and the de�nitionsof Eq.(3), the semilassial expression in Eq.(1)for the Casimir energy of a massless salar �eldsatisfying Neumann or Dirihlet boundary ondi-tions on a spherial surfae beomes,E = �h4�R Xm;n�00< he�i�2 �(n;m)�� Z 10d��3Z 10dzzp1�z2 ei�[n(p1�z2�z aros(z))+m�z℄� :(4)The integral over I3 has here been performedin stationary phase approximation. Beause theHamiltonian does not depend on I3, only peri-odi orbits with m3 = 0 ontribute[26℄ in station-ary phase. Sine �I2 � I3 � I2, one has thatR dI3 = 2I2 = �z. The fator 2I2 aounts forthe 2(l+ 1=2)-degeneray of a state with angularmomentumL = l+1=2 = I2℄. By taking (4 times)the real part in Eq.(4) one an restrit the sum-mations to non-negative integers and hoose thepositive branh of the square root- and inverseosine- funtions in the exponent3. The Keller-Maslov index �(n;m) of a lassial setor depends3The primed sum now implies half the summand if one ofthe integers vanishes as well as the absene of the m =n = 0 term.



5on whether Neumann or Dirihlet boundary on-ditions are satis�ed on the spherial shell and willbe determined presently.For positive integers m and n, the phase of theintegrand in Eq.(4) is stationary at z = �z(n;m) 2[0; 1℄ where,0 = �n aros(�z) +m�) �z(n;m) = os(m�=n); n � 2m > 1 : (5)Restritions on the values of m and n arise be-ause aros(�z) 2 [0; �=2℄ on the hosen branh.The phase is stationary at lassially allowedpoints only for setors with n � 2m > 1. Semi-lassial ontributions to the integrals of othersetors arise due to the endpoints of the z-integration at z = 0 and z = 1 only. These"di�rative" ontributions are of sub-leading or-der in an asymptoti expansion of the spetraldensity for large �. Note thatm! m+n amountsto the hoie of another branh of the inverse o-sine.The lassial ation in setors with stationarypoints is,Sl(n;m) = �h�n sin(m�=n) (6)= (E=)2nR sin(m�=n) = (E=)L(n;m) ;where L(n;m) is the total length of the lassi-al orbit. Some of these lassial periodi orbitsare shown in Fig. 1. The integer m in Eq.(6)gives the number of times an orbit irles the ori-gin. The integer n > 1 gives the number of timesan orbit touhes the spherial surfae. As indi-ated in Fig. 1, the set of lassial periodi orbitsin the (n;m)-setor form a austi surfae and adouble overing is required for a unique phase-spae desription[36℄. The two sheets are joinedat the inner austi [indiated by a dashed ir-le in Fig. 1℄ and at the outer spherial shell ofradius R. Every orbit that passes the spherialshell n times also passes through the austi ntimes. The ross-setion of a bundle of rays isredued to a point at the spherial austi sur-fae. The austi thus is of seond order and as-soiated with a phase loss of � every time it isrossed. At eah speular reetion o� the outershell Dirihlet boundary onditions require an ad-ditional phase loss of � whereas there is no phase

hange for Neumann boundary onditions. Alto-gether the Keller-Maslov index of setor (n;m)depends on n only and is given by,�(n;m) = � 0; for Dirihlet b::2n; for Neumann b:: : (7)For smooth surfaes on whih the eletromag-neti �elds satis�es (ideal) metalli boundary on-ditions, the eletromagneti Casimir energy anbe viewed as due to two massless salar �elds,one satisfying Dirihlet and the other Neumannboundary onditions[21℄. Due to the Keller-Maslov phases of Eq.(7) only setors (n;m) witheven n = 2k � 2m � 2 ontribute[21℄ to the SCEin leading order of the asymptoti expansion forlarge �.
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a) b)

(2,1)
(3,1)

(4,1)

(5,1)

(5,2)Fig.1: Classial periodi rays of a ball and solid ylin-der. a) The shortest primitive rays orresponding towinding numbers (n;m) 2 f(2; 1); (3; 1); (4; 1)g. b)Primitive rays to winding numbers (n;m) = (5; 1)and (5; 2). Causti surfaes are shown as thin irles.The dashed part of any trajetory is on one sheet andits solid part on the other of a two-sheeted overingspae. The "phase spae" of the (5; 2) setor is in-diated the hathed area. Note that austis are of2nd order for a spherial avity but of 1st order for aylindrial one.Note that setors with m = 0 or n = 0 havevanishing lassial ation and do not ontributeto the SCE. Eq.(5) implies that extremal pathsin the (n > 0;m = 0) setors have maximal angu-lar momentum 1 = �z = l=(ER). These are greatirles that are wholly within the spherial shellin a plane perpendiular to the one under on-sideration, i.e. lassial orbits with I3 = Lz = 0.



6Beause the measure of the z-integral vanishes atz = 1 like p1� z these lassial paths are ex-tremal but not stationary. This an also be seenby expanding the exponent in Eq.(4) about thestationary point. For (n > 0;m > 0) the urva-ture of the exponent at �z(n;m) is �nite,�2��z2 [n(p1��z2��z aros(�z))+m��z℄ = nsin(m�n ) ; (8)whereas it diverges in setors with m = 0. Thebehavior of the exponent for z � 1 in this ase is,p1�z2�z aros(z) = 2p23 (1�z)3=2+O((1�z)5=2) :(9)Quadrati utuations about the lassial orbitwith m = 0 thus have vanishing width and thesesetors do not ontribute in stationary phase ap-proximation. To leading semilassial auray,the Casimir energy of a spherial avity with anideal metalli boundary therefore is,EballEM � �h4�R Re 1Xn=1(1n + (�1)n) n=2Xm=1� Z 10d��3ein� sin(m�n )Z 10dzzp1�z2 ein�(z��z(n;m))22 sin(m�n )� �hR " 1Xk=1 116�k4 + 1Xk=2 15p2256k4 k�1Xm=1 os(m�2k )sin2(m�2k )#� 0:04668:::�hR : (10)This semilassial estimate is only about1% larger than the best numerial value[6℄0:04617:::�h=R for the eletromagneti Casimirenergy of a spherial avity with an in�nitesimallythin metalli surfae. Note that the ontributionfrom the (2k; k) setors had to be onsidered sep-arately in Eq.(10) sine the measure dzz vanishesat the stationary point �z(2k; k) = os(�=2) = 0of the integrand, whih is an endpoint of the in-tegration domain. As an be seen in Fig. 1a),the lassial rays of (2k; k)-setors go bak andforth between antipodes of the avity and passthrough its enter { they have angular momen-tum ~L = 0 = �z(2k; k).The shortest primitive orbits give somewhatless than half (1=(16�) � 0:02) of the total SCEof the spherial avity { muh less than the 92%

they ontribute to the Casimir energy of paral-lel plates. The main reason is that ontributionsonly drop o� as 1=k2 rather than like 1=k4 asfor parallel plates. The length of an orbit in the(4; 1)-setor (the insribed square in Fig. 1a) fur-thermore is just a fator of p2 longer than an(2; 1)-orbit [whih in turn is a fator of 1=p2shorter than an (4; 2)-orbit℄. To estimate themagnitude of the ontribution of any partiularsetor one has to take the available phase spaeas well as the ray's length into aount. Thus, al-though the length of a (2k; 1)-orbit tends to 2�Rfor k ! 1, the assoiated phase-spae (essen-tially given by the volume of the shell betweenthe boundary of the avity and the inner austi)dereases like 1=k2. This aounts for the rela-tively slow onvergene of the sum in Eq.(10). Toahieve an auray of 10�5, the �rst 50 terms ofthe sum were evaluated expliitly and the remain-ing ontribution was estimated using Rihard-son's extrapolation method.4. The Cylindrial CavityThe example of a spherial avity shows thatthe SCE in some instanes is surprisingly a-urate. However, there evidently are systemswithout periodi lassial orbits, suh as the twoperpendiular planes investigated in[29℄, or theCasimir pendulum of[49℄. None of these systemsis integrable, and although there are no stationaryperiodi lassial rays, periodi rays of extremal(shortest) length do exist. Semilassially, suhextremal periodi rays are assoiated with di�ra-tion[50,51℄. The inlusion of di�rative ontribu-tions in the semilassial estimate of Casimir en-ergies has so far only been attempted for a systemof spheres[52℄. Below it will beome evident thatdi�rative ontributions also play a entral rolein the Casimir energy of a ylindrial avity.The Casimir energy of a dilute ylindrial gasof atoms was found to vanish in[53℄. A num-ber of alulations have on�rmed that there isno ontribution up to seond order in the re-etion oeÆients for dieletris[31,32,33℄ andfor media where the speed of light on eitherside of an in�nitesimally thin ylindrial bound-ary is the same[7,19,21℄. Balian and Duplantier



7even onjetured that the Casimir energy of anideal metalli ylindrial avity may vanish[21℄to all orders of the multiple reetion expan-sion. The non-vanishing Casimir energy of anideal metalli ylindrial avity[17℄ was subse-quently reanalyzed in the framework of zeta-funtion regularization. It was on�rmed thatthe Casimir energy of an ideal metalli ylinderonly vanishes to leading order and that higherorders in the reetion oeÆients all give a non-vanishing ontribution[18℄. However, some math-ematial prowess is required to analytially provethe lowest order anellation in the �eld-theoretiapproah[33℄. That a number of separate ontri-butions should onspire to a null result withoutapparent physial reason has been onsidered bymany as somewhat "mysterious"[7,12℄. The sus-piion that the reason ould be purely geometrialis nourished by the fat that the �nite part of thepair-wise Van DerWaals interation energy of adilute gas of atoms vanishes for a ylinder[31,53℄but not for other geometries. However, a arefulperturbative analysis reveals that the interationenergy of any real dilute ylindrial gas of atomsinludes a logarithmi divergene in addition todivergent ontributions proportional to the vol-ume and surfae area of the ylinder[31℄. Thesubtration of this logarithmi divergene gener-ally is ambiguous and the Casimir energy of aylindrial avity depends sensitively on proper-ties of its boundary[54℄ in the ultraviolet. A par-tiular boundary (say that of an in�nitesimallythin ylindrial shell separating media with thesame speed of light) thus may oneivably have a�nite (negative) Casimir energy, whereas a verysmall modi�ation of this boundary (say in itsthikness) leads to a logarithmi divergene.The alulation below supports this possibility.The semilassial ontribution to the Casimir en-ergy due to any periodi lassial ray is foundto vanish for a ylinder regardless of the ree-tion oeÆients (without absorption). The SCEof a ylindrial avity vanishes to all orders inthe reetion oeÆients for the same reason thatthe SCE of a spherial avity is positive { dueto relatively obvious optial phases. The semi-lassial point of view thus gives a straightfor-ward and physially aeptable explanation for

the otherwise mysterious anellations. It alsoindiates that any additional phase hange at theboundary will destroy this deliate mehanism.The �nite eletromagneti Casimir energy[17℄ ofa ylinder with idealized metalli boundary ondi-tions on the other hand is more diÆult to explainsemilassially. However, ontrary to a spheri-al avity and in agreement with the perturba-tive result of[31℄, the semilassial analysis of theCasimir energy of a ylindrial avity also enoun-ters logarithmi divergent ontributions. The lat-ter are "di�rative" end-point ontributions thatare ignored by the stationary phase approxima-tion. There is reason to believe[43,48℄ that thesubtration of the logarithmi divergene by theontribution from "exterior" modes is the reasonfor the �nite Casimir energy of an idealized metal-li ylinder[17℄.Let us now turn to the alulation of the ele-tromagneti SCE of a long ylindrial avity, orrather a very thin torus with one perimeter Lthat is muh larger than the other, L � 2�R.The latter is an integrable system. In the limitR=L ! 0, the only lassial trajetories of rele-vane are again those of Fig. 1 and the SCE of along ylindrial avity an be obtained along sim-ilar lines as that of a spherial one { with someimportant modi�ations. Due to the toroidalsymmetry of the (long) ylinder, the third a-tion I3 = LpL=(2�) in this ase is proportionalto the onserved momentum pL along the axisof the (thin) ylinder and in Eq.(2) the energy Emust be replaed bypE2 � (2�I3=L)2. The se-ond ation furthermore is the angular momentumrather than just its magnitude. It again is onve-nient to onsider dimensionless quantities for thefration�1 � x � 1 of the total momentumalongthe axis of the ylinder, for the ratio �1 � z � 1of the angular momentum to the maximal pos-sible angular momentum of a photon within theavity and for its energy 0 � � < 1 in units of�h=(2R),� = 2ER=(�h); z = I2ERp1� x2 ; x = 2�I3EL :(11)Proeeding as in the spherial ase, the semilas-sial expression in Eq.(1) for the SCE of a mass-less salar �eld satisfying Neumann or Dirihlet



8boundary onditions on a ylindrial surfae be-omes,Eyl = �hL16�2R2 Xm;n�00<he�i�2 �(n;m)Z 10d�Z 1�1dzZ 1�1dx ���3p1�z2ei�p1�x2[n(p1�z2�z aros(z))+m�z℄i :(12)The ontribution from periodi orbits that windaround the perimeter of the torus is negligiblein the R=L ! 0 limit and has been omittedin Eq.(12). The phase of the integrand in Eq.(12)is stationary at �x = 0 (orresponding to pL = 0)and �z(n;m) given in Eq.(5). Sine the domainof integration for the z-variable di�ers from thespherial ase, setors with 1 < m < n � 1 havenon-trivial stationary points. The lassial ationof an (n;m)-setor is the same as for the spheri-al avity and is given by Eq.(6). The utuationsabout suh a lassial ray on the other hand arequite di�erent for ylindrial and spherial avi-ties. To quadrati order in the utuations aboutthe stationary point �x = 0; �z(n;m), the ation forthe ylinder isS(n;m) � nh sin m�n (1�x22 )+(z � �z(n;m))22 sin m�n i: (13)The unonstrained Gaussian integrals over z ��z(n;m) and x result in a fator of 2�=(n�) instationary phase approximation. Note that thephases of ��=4 assoiated with the two Gaussianintegrals anel in this ase. Performing also theintegral over � in Eq.(12) �nally gives,Eyl = �hL4�R2 1Xn=2 n�1Xm=1<�i e�i �2 �(n;m)n4 sin2 m�n : (14)The ruial di�erene to the previous ase of aspherial avity is the phase fator of �i. It arisesbeause the utuations of a ylindrial systemhave one fewer zero-mode than for a spherial one.[The Hamiltonian of a spherial avity does notdepend on I3 / Lz, whereas it does depend onI3 / pL for the ylindrial avity. The 2� 2 Hes-sian matrix Hij = �2H=�Ii�Ij with 3 > i; j > 1has one zero mode for a spherial avity, but nonein the ylindrial geometry. One an show[26℄

that this di�erene in zero modes implies an ad-ditional phase loss of �=2 for the periodi rays ofa ylindrial avity.℄ This additional phase lossultimately is responsible for the vanishing of theSCE of a ylindrial avity. To verify this we onlyneed to ompute the Keller-Maslov index �(n;m)for Neumann and Dirihlet boundary onditions.The austis of the ylindrial avity are of �rstorder rather than seond: the ross-setion of abundle of rays beomes one-dimensional at theausti { it is foussed to a line rather than apoint. Taking into aount the phase retardationby �=2 every time a ray passes a �rst order aus-ti, the analogous result to Eq.(7) for a ylindri-al avity is,�(n;m) = � 3n; for Dirihlet b::n; for Neumann b:: (15)Contributions from paths with Neumann andDirihlet boundary onditions and an odd num-ber of reetions anel eah other and, as forthe spherial avity, only setors to even n =2k = 2; 4; : : : ontribute to the eletromagnetiSCE [this is quite generally so[21℄℄. Summing on-tributions to the eletromagneti Casimir energyfrom the two salars in Eq.(14) then gives thenull resultEEMyl = �hL32�R2 1Xk=1 2k�1Xm=1 < �i(�1)kk4 sin2 m�2k = 0 : (16)In Eq.(16) every periodi orbit gives a van-ishing ontribution to the SCE of a ylindrialavity. The anellation evidently depends ona deliate relation between the optial phases.It is interesting that a small additional phaseloss at eah reetion o� the surfae results inanegative SCE for a ylindrial avity, but thatthe Casimir energy vanishes as long as the abovephase relations hold { even if the magnitude ofthe reetion oeÆients is less than unity. TheSCE in this sense is in line with previous resultsfor[31,32,33,53℄ the Casimir energy of a dilute di-eletri ylinder, and in fat supports the onje-ture of Balian and Duplantier in[21℄. The non-vanishing Casimir energy of a ylindrial avitywith ideal metalli boundary onditions on theother hand is not so easily explained by this semi-lassial point of view.



9Some insight is gained by noting that the on-tribution of any setor to the SCE of a ylin-drial avity in Eq.(12) { even setors with non-trivial periodi lassial paths { diverges. This isin marked ontrast to the spherial ase, wherethe ontribution from setors with non-trivial pe-riodi lassial paths (haraterized by n � 2m >1) is �nite. The divergene is most readily madeexpliit by saling �p1� x2 ! � in the integralof Eq.(12). Without ultraviolet uto�, the result-ing x-integral in this ase formally gives the fa-tor,Z 1�1 dx(1� x2)2 � 1 ; (17)whose divergene is due to the behavior of theintegrand as x!�1. It may be regulated by in-troduing an ultraviolet uto� 
 of some sort forthe energy integral [that is in the integral over�℄. As may be seen from Eq.(17), the regulatedintegral will always inlude terms that are loga-rithmially divergent as 
 ! 1. The subtra-tion of a logarithmi divergene depends on de-tails of the uto� and thus is sensitive to ultra-violet properties of the boundary[38℄. The evalu-ation of (divergent) integrals in stationary phasean be onsideredone way of subtrating the di-vergene. Beause the divergene is logarithmi,the subtration is by no means unique in thisase. The presene of suh a logarithmi diver-gene for ylindrial avities was �rst emphasizedby Barton[31℄ in a perturbative treatment of a di-lute gas of atoms, although it also is evident in theontribution from interior modes to the Casimirenergy of an ideally metalli ylinder[43℄.The foregoing is ompatible with previousresults[17,19,7℄ that the Casimir energy of a ylin-drial avity is �nite if the speed of light insideand outside itsin�nitesimally thin boundary sur-fae are the same. It for instane is negative foridealized metalli boundary onditions[17℄. TheCasimir energy in this ase apparently does notsu�er from any logarithmi divergenes (or equiv-alently, from any pole ambiguities in zeta fun-tion regularization). The Casimir energy is �-nite for the in�nitesimally thin boundary, beausethe logarithmi divergent ontribution from inte-rior modes is preisely anelled by the similarly

logarithmi divergent ontribution from exteriormodes. Sine the boundary is in�nitesimally thinand the speed of light is the the same, a preiseanellation is possible. The divergene reappearsfor a dieletri avity in vauum with a lowerspeed of light in the dieletri[54℄. This oursfor a spherial as well as for a ylindrial avity,but with an important di�erene: the divergenein the spherial ase is not logarithmi and maybe unambiguously subtrated[9℄. The subtrationof the logarithmi divergene in the Casimir en-ergy of the ylindrial avity on the other handrequires some energy sale that desribes proper-ties of the boundary in the ultraviolet. An anal-ogous problem would be enountered for an idealmetalli boundary of �nite thikness[43℄ and infat for almost any small deviations from an ide-alized and in�nitesimally thin ylindrial bound-ary between two media with idential speed oflight. Paradoxially, de�ning the Casimir energyof a ylindrial avity in a manner that does notdepend on the detailed ultraviolet properties ofits boundary appears all but impossible.It perhaps is worth mentioning in this regardthat the Casimir energy of a massless salarexitation on the two-dimensional spherial ortoroidal boundaries is well-de�ned. For a spher-ial shell and a very thin torus, this Casimir en-ergy has the same dependene on the dimensionsas the Casimir energies of the orresponding av-ities. For a two-sphere (S2) and a very thin torusT2 with L� 2�R these Casimir energies areES2 = 0 (18)ET2 = � �hL4�3R2 �(3) � �0:0097 : : : �hLR2 :Note that these Casimir energies of a mass-less salar on two-dimensional spherial andtoroidal surfaes are exatly reproduedsemilassially[26,39,16℄. The presene of salarsurfae modes therefore does not hange theCasimir energy of a spherial avity but ouldvery well ontribute to that of a ylindrial one.The Casimir energy of a massless degree of free-dom on a torus not only is of the same form,but also of the same sign and order of magnitudeas the Casimir energy of an ideal metalli ylin-drial avity[17,18℄. Suh a ontribution from



10massless surfae modes thus might be importantfor a ylindrial avity and would furthermore bediÆult to separate from the ontribution due toavity modes.5. DisussionThe semilassial approximation to the Casimirenergy of a avity to leading order inludes onlyontributions from quadrati utuations aboutstationary periodi lassial rays. Sine all peri-odi rays lie in the interior, the SCE of a on-ave avity to leading order depends on the exte-rior only indiretly through reetion oeÆients.Periodi lassial rays furthermore are of �nitelength. Their ontribution to the Casimir energythus is ultraviolet �nite. However, this approx-imation is sensible only if UV-divergent ontri-butions to the vauum energy an be subtratedunambiguously from the spetral density. Log-arithmially divergent ontributions to the va-uum energy require a subtration sale[38℄. Thelatter is a lear indiation that the subtrationannot be universal sine it depends sensitivelyon the UV-properties of the boundary. Smallhanges in the boundary onditions in this asedo not neessarily orrespond to small hangesin the Casimir energy. The loal properties ofa boundary the vauum energy an be sensitiveto apparently inlude its thikness: whereas theCasimir energy of a ylindrial avity with anideal and in�nitesimally thin metalli boundaryis �nite[17℄ to any order in the (real) reetionoeÆients[18℄, a logarithmi dependene on theuto� appears in more realisti situations[31,43℄.An ambiguous subtration is also required in thesemilassial approximation. The absene of anylogarithmi divergene for the in�nitesimally thinboundary apparently is due to a anellation byexterior modes. Suh a anellation of logarith-mi singularities an our when exterior and in-terior modes depend on preisely the same sale,the radius R of the ylindrial avity in this ase.Although the two logarithmi divergenes (eahproportional to �hL=R2 for dimensional reasons)anel in the idealized situation, they would notif the boundary is of �nite thikness.We onsidered only the semilassial Casimir

energy (SCE) of a spherial and of a toroidal av-ity with ideal metalli boundary onditions, thatis with real reetion oeÆients of unit magni-tude. These are integrable systems and the SCEwas derived from the "dual" desription of thespetral density in terms of periodi paths on in-variant tori[23,35℄. The winding numbers of a pe-riodi orbit are dual to the quantum numbers ofa mode. In stationary phase approximation theSCE of a spherial avity is positive and oinideswith the �eld theoreti value for an in�nitesimallythin metalli boundary to about 1%. The alula-tion is rather short and straightforward and leadsto the onvergent sum of Eq.(10). Eah term inthis sum may be interpreted as the ontributionfrom a lass of periodi rays. A few the shorterprimitive periodi rays are depited in Fig. 1. Theontribution from any setor with lassial peri-odi rays is �nite in this ase. Divergent ontri-butions are restrited to setors with no lassialrays.The ontribution from periodi orbits to theSCE of a ylindrial avity with an ideal metal-li boundary on the other hand vanishes to allorders in the number of reetions. This oursdue to an overall phase hange by an odd multi-ple of �=2 for any lassial periodi ray. Restrit-ing to just two reetions, this null result agreeswith �eld theoreti alulations for in�nitesimallythin metalli boundaries[7,19,?, 21,55℄. The van-ishing SCE appears to support the onjeture ofBalian and Duplantier that the Casimir energyof a metalli ylindrial avity may vanish. How-ever, ontrary to the spherial ase, the ontribu-tions of any lassial setor to the SCE of a ylin-drial avity diverges. Without subtration of theUV-divergent part, the (�nite) semi-lassial on-tribution to the vauum energy we obtained is notvery meaningful. Unfortunately the divergene ofthe integral in Eq.(17) inludes a logarithmi de-pendene on the uto�. The subtration of UV-divergent ontributions to the Casimir energy ofa ylinder thus is sensitive to a sale and an-not be ahieved in a universal fashion. The log-arithmi dependene on the uto� was �rst ob-served by Barton[31℄ in his perturbative alu-lation of the vauum energy for a (dilute) gasof ylindrial shape to lowest order in the �ne



11struture onstant. Semilassially this wouldalso orrespond to onsidering the ontributionfrom rays with only two reetions (n = 2). Thatthe UV-subtrations are fragile and depend ru-ially on the UV-properties of the boundary isalso observed when the speed of light within andoutside an in�nitesimally thin ylindrial bound-ary di�er[54℄. In the eletromagneti ase, thelogarithmi divergenes of exterior and interiorontributions to the vauum energy of a metalliylinder anel for an in�nitesimally thin metalliboundary[43℄. However, they in general annotbe unambiguously subtrated[48℄.These examples of a spherial- and ylindrialavity show that the SCE is quite reasonable andis rather simple to alulate when the Casimirenergy is robust, that is, when the subtrationsdo not depend on �ne-tuning of the ultravioletbehavior of the boundary. The lassial periodipaths that ontribute to the SCE of a onaveavity in stationary phase approximation lie en-tirely within the avity. Their ontribution de-pends on the exterior of the avity through re-etion oeÆients only. It has been argued forsome time that a Casimir energy obtained with-out expliit inlusion of exterior modes (as for aparallelepiped[14,16℄) is all but meaningless[12℄.The riterion favored here[31,26℄ onsiders anyde�nition of a Casimir energy reasonable (andin priniple physially realizable) in whih theUV-divergenes of the vauum energy have beensubtrated in a universal fashion, that is with-out expliit referene to UV-properties of theboundary. The subtration may (and in gen-eral will) inlude divergent ontributions from ex-terior modes. The Casimir energy of a paral-lelepiped an be onsidered a ase in point: asPower[56℄ did for just two slabs, one an alwaysassemble (at most 8) parallelepipeds to a ube of�xed dimensions { the Casimir energy of an in-dividual parallelepiped[14,16℄ in this ase reetshanges in the vauum energy of the whole ubeas the four dividing planes are moved adiabat-ially. By moving interior surfaes of the ube(that in priniple ould have �nite thikness), onemeasures only that �nite part of its vauum en-ergy that depends on the dimensions of the indi-vidual parallelepipeds. By ontrast, it is diÆult

to imagine that global hanges in a vauum en-ergy are measurable (or even physially relevant)if their �niteness depends ruially on loal har-ateristis of the system[26℄. Perhaps somewhatsurprisingly, the eletromagneti Casimir energyof a very long ylindrial avity does not appearto be robust in this sense, whereas the eletro-magneti Casimir energy of a spherial avity is.Apart from relating Casimir energies to opti-al properties, one of the advantages of a semi-lassial desription would be the possibility tomodel more realisti (but robust) physial sys-tems. The previous onsiderations are readily ex-tended to dieletris by using appropriate om-plex and in general frequeny-dependent ree-tion oeÆients. In the ase of dieletri slabsMilton has shown[12℄ that Lifshitz's theory[10,11℄may be reprodued in this manner. Finite tem-perature is inorporated[57℄ by allowing periodirays to also wrap around a �titious periodi ex-tra dimension of irumferene �h=(kT ). Finitetemperature orretions thus are small if somelassial periodi paths are muh shorter than thisirumferene. At room temperature the lengthof a periodi ray inreases by of about 7:6 mi-rons every time it winds about the temperaturediretion. Temperature orretions therefore aretiny for most nanometer sale experiments4 butould be of greater interest in some astrophysialonsiderations (3oK � 1mm). Corretions due tosurfae roughness generally will be more impor-tant in tehnologial appliations. Many lassialmodels for di�usive reetion from rough surfaesexist and Lambert's Law is easily inorporated inthe semilassial approah by appropriate ree-tion oeÆients. The dependene on the wave-length perhaps an be modelled by a stohastiterm of the ation that aounts for utuationsin the length of a lassial periodi orbit uponreetion from rough surfaes. Apart from anaverage hange in length, this leads to a dampingterm of the form �(�LE=�h)2=2 in the lassialation, where (�L)2 is the variane in the lengthof the periodi orbit. Assuming that this varianeis itself proportional to the length of the orbit,4The laim that this orretion has been measured tosuÆient auray[2℄ to distinguish between di�erent ap-proahes has reently been disputed[58℄.
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