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6 Semi
lassi
al Ele
tromagneti
 Casimir Self-EnergiesMartin S
haden�Rutgers University, 211 Smith Hall, 101 Warren St., Newark, NJ 07102, U.S.A.The ele
tromagneti
 Casimir energies of a spheri
al and a 
ylindri
al 
avity are analyzed semi
lassi
ally. The�eld theoreti
al self-stress of a spheri
al 
avity with ideal metalli
 boundary 
onditions is reprodu
ed to betterthan 1%. The subtra
tions in this 
ase are unambiguous and the good agreement is interpreted as eviden
e that�nite 
ontributions from the exterior of the 
avity are small. The semi
lassi
al ele
tromagneti
 Casimir energyof a 
ylindri
al 
avity on the other hand vanishes to any order in the real re
e
tion 
oeÆ
ients. The Casimirenergy of a 
ylindri
al 
avity with a perfe
t metalli
 and in�nitesimally thin boundary on the other hand is �niteand negative[17℄. Contrary to the spheri
al 
ase and in agreement with Barton's perturbative analysis[31℄, thesubtra
tions in the spe
tral density for the 
ylinder are not universal when only the interior modes of are takeninto a

ount[43℄. The Casimir energy of a 
ylindri
al 
avity therefore depends sensitively on the physi
al natureof the boundary in the ultraviolet whereas the Casimir energy of a spheri
al one does not. The extension of thesemi
lassi
al approa
h to more realisti
 systems is sket
hed.1. INTRODUCTIONDemonstrating that the 
olle
tive intera
tionof atomi
 systems in some 
ases have ma
ros
opi

onsequen
es, Casimir obtained the now famousattra
tive for
e between two neutral metalli
plates[1℄ in terms of the boundary 
onditionsthey impose on the ele
tromagneti
 �eld. Halfa 
entury later, his predi
tion has been veri�edexperimentally[2℄ to better than 1%.Twenty years after Casimir's predi
tion for twoparallel plates, Boyer 
al
ulated the zero-pointenergy of an ideal 
ondu
ting spheri
al shell[3℄.Contrary to intuition derived from the attra
tionbetween two parallel plates, the sphere tends tobe expanded. Boyer's result has sin
e been im-proved in a

ura
y and veri�ed by a number of�eld theoreti
 methods[4,5,6,7,8℄ { even thoughthere may be little hope of observing this e�e
texperimentally in the near future[9℄.Sin
e �eld theoreti
 methods require expli
itor impli
it knowledge of 
avity frequen
ies, theyhave predominantly been su

essfully employedto obtain the Casimir energies of 
lassi
allyintegrable systems. Thus, in addition to a�email: ms
haden�andromeda.rutgers.edu

spheri
al 
avity, the ele
tromagneti
 Casimirenergies of diele
tri
 slabs[10,11,12℄, metalli
parallelepipeds[13,14,15,16℄ and long 
ylinders[7,17,18,19,20℄ have been 
omputed in this manner.However, most systems are not integrable andoften 
annot even be approximated by integrablesystems. It thus is desirable to develop reli-able methods for estimating the Casimir ener-gies of 
lassi
ally non-integrable and even 
haoti
systems. Balian, Blo
h and Duplantier 
al
u-late Casimir energies based on a multiple s
atter-ing approximation to the Green's fun
tion[13,21℄.This approa
h does not require knowledge of thequantum me
hani
al spe
trum and the geomet-ri
 expansion in prin
iple is exa
t for suÆ
ientlysmooth and ideally metalli
 
avities. However,ultra-violet divergent 
ontributions have to besubtra
ted at every order of the multiple s
at-tering expansion. The relative importan
e ofthe �nite remainder at ea
h order in the multi-ple s
attering expansion is hard to assess a pri-ori and it in pra
ti
e is often diÆ
ult to 
arrythe expansion beyond the �rst few terms. In[22℄a semi
lassi
al method was proposed to esti-mate (�nite) Casimir energies. It is based onGutzwiller's tra
e formula[23℄ for the response1



2fun
tion and is suitable for Casimir energies ofhyperboli
 and 
haoti
 systems[22,24,25℄ with iso-lated 
lassi
al periodi
 orbits. Although not ex-a
t in general, the semi
lassi
al approximationas-so
iates the �nite (Casimir) part of the va
uumenergy with opti
al properties of the system. It
aptures aspe
ts of Casimir energies that havebeen puzzling for some time[26℄. Path integralmethods[27,28,29,30℄ in prin
iple allow one to ob-tain Casimir intera
tions between disjoint bodiesto arbitrary pre
ision. Due to unresolved renor-malization problems, these methods have so farnot been used to study the self stress of 
avities.The purpose of this arti
le is to estimate and ana-lyze the Casimir stress of some 
avities semi
las-si
ally. To 
ompare with �eld theoreti
 resultsfor spheri
al and 
ylindri
al 
avities, a semi
las-si
al method that is adapted to 
lassi
ally inte-grable systems is employed. The robustness ofthe Casimir energy under small 
hanges of theboundary 
onditions turns out to be of 
ru
ialimportan
e for the semi
lassi
al analysis.The simpli
ity, transparen
y and surpris-ing a

ura
y of the semi
lassi
al approxima-tion is demonstrated in Boyer's problem[3,4,5,6,7,8℄, that is in determining the ele
tromag-neti
 Casimir energy of a spheri
al 
avity withan (ideal) metalli
 boundary. The semi
lassi
alanalysis of this problem is an order of magni-tude simpler than any given previously. However,sin
e no bounds are obtained, it at present is notpossible to judge the a

ura
y of this approxima-tion without 
omparing to exa
t �eld theoreti
results[6℄. It will be
ome rather 
lear though,that the semi
lassi
al analysis is a

urate enoughto infer the sign of the Casimir energy of a 
avityby geometri
 arguments when the 
ontributionfrom periodi
 orbits does not vanish. We shall seein se
t. 4 that periodi
 orbits in fa
t do not 
on-tribute to the Casimir energy of a long 
ylindri
al
avity. The somewhat surprising null-result thatthe Casimir energy of a 
ylinder[7,19,21,31,32,33℄vanishes to �rst order in the re
e
tion 
oeÆ
ientsthus is readily explained by geometri
 opti
s.However, the semi
lassi
al Casimir energy of a
ylindri
al 
avity vanishes to all orders in the realre
e
tion 
oeÆ
ients and thus also vanishes foran ideal metalli
 
avity. The dis
repan
y to the

�nite �eld theoreti
 Casimir energy of an ideal-ized, in�nitesimally thin 
ylindri
al boundary be-tween non-dispersive media with the same speedof light[17,18,19℄ 
an be tra
ed to the presen
e ofa logarithmi
 divergen
e observed by Barton[31℄in his perturbative treatment of the non-ideal di-lute 
ase. The exa
t 
an
ellation of this diver-gen
e in the �eld theoreti
 approa
h is due to thein�nitesimal thi
kness of the assumed boundary {interior and exterior 
ontributions to the Casimirenergy in this 
ase depend on just one 
ommons
ale, the radius of the 
ylinder.2. The Dual Pi
ture: Casimir Energies ofIntegrable Systems in Terms of Periodi
RaysIntegrable systems may be semi
lassi
allyquantized in terms of periodi
 paths on invari-ant tori[34℄ { in mu
h the same manner as Bohr�rst quantized the hydrogen atom. Although ingeneral not an exa
t transformation, 
lassi
al pe-riodi
 orbits on the invariant tori are dual to themode frequen
ies in the semi
lassi
al sense. Ap-plying Poisson's summation formula, the semi-
lassi
al Casimir energy (SCE) due to a masslesss
alar may be written in terms of 
lassi
al peri-odi
 orbits[23,26,35℄,E
 = 12Xn �h!n � UV subtra
tions� 12�hdXm 0e� i�2 �m Zsp dIH(I) e2�im�I=�h :(1)The 
omponents of the d-dimensional ve
tor Iin Eq.(1) are the a
tions of a set of properly nor-malized a
tion-angle variables that des
ribe theintegrable system. The exponent of the inte-grand in Eq.(1) is the 
lassi
al a
tion (in unitsof �h) of a periodi
 orbit that winds mi timesabout the i-th 
y
le of the invariant torus. H(I)is the asso
iated 
lassi
al energy and �m is theKeller-Maslov index[36,37℄ of a 
lass of periodi
orbits identi�ed by m. The latter is a topologi-
al quantity that does not depend on the a
tionsI. To leading semi
lassi
al order, the (primed)sum extends only over those se
tors m with 
las-



3si
al periodi
 paths of �nite a
tion (see below).The 
orresponden
e in Eq.(1) 
an only be ar-gued semi
lassi
ally[23,35℄ and the integrals onthe RHS therefore should be evaluated in station-ary phase approximation (sp).Contributions to the Casimir energy from highfrequen
ies 
orrespond to those from short pe-riodi
 orbits in this dual pi
ture. Divergen
esdue to periodi
 
lassi
al paths of vanishing length(and thus vanishing total a
tion) on the RHSof Eq.(1) 
orrespond to ultra-violet divergen
esof the mode sum on the LHS of Eq.(1). If thesedivergen
es 
an be subtra
ted unambiguously[26,31,38℄, the dependen
e of the va
uum energy onma
ros
opi
 properties of the system is semi
las-si
ally represented by 
ontributions due to 
las-si
al periodi
 orbits of �nite a
tion only. Theprimed sum on the RHS of Eq.(1) indi
ates thisrestri
tion2. The (divergent) Weyl 
ontributionto the va
uum energy from the m = (0; : : : ; 0)-se
tor in parti
ular has to be subtra
ted. To-gether with an evaluation of the integrals instationary phase, this de�nes the semi
lassi
alCasimir energy (SCE). To physi
ally interpret theSCE, one has to 
onsider the impli
it subtra
tionsin the spe
tral density[21,26,31℄.3. The Spheri
al CavityThe semi
lassi
al spe
trum of a massless s
alaris exa
t for a number of manifolds withoutboundary[39℄ and the de�nition of the SCE by theRHS of Eq.(1) 
oin
ides with the Casimir energyof zeta-fun
tion regularization in these 
ases. Italso is exa
t for massless s
alar �elds satisfyingperiodi
-, Neumann- or Diri
hlet- boundary 
on-ditions on parallelepipeds[14,16,26℄ as well as forsome tessellations of spheres[26,40,41℄. In [22℄ thesemi
lassi
al approximation was argued to givethe leading asymptoti
 behavior of the Casimirenergy whenever the latter diverges as the ra-tio of two relevant lengths vanishes. All these
riteria do not apply to the Casimir self-stressof a spheri
al 
avity �rst 
onsidered by Boyer[3℄.The latter is an integrable system, but the semi-2This is 
on
eptuallynot so di�erent from 
onsideringonlythe 
ontribution of topologi
ally non-trivial "instanton"se
tors to the va
uum energy of a �eld theory.


lassi
al spe
trum is only asymptoti
ally 
orre
t.There furthermore is no ratio of lengths in whi
hone might hope to obtain an asymptoti
 expan-sion. One therefore 
annot expe
t the semi
las-si
al approximation to be exa
t in this 
ase. Itnevertheless turns out to be surprisingly a

urate.The SCE is obtained by performing the integralsof Eq.(1) in stationary phase and has a very trans-parent interpretation in terms of periodi
 orbitswithin the 
avity only. The sign of the SCE ofa spheri
al 
avity in parti
ular will be quite triv-ially established and the good agreement supportsthe 
onje
ture that the 
ontribution from exte-rior modes mainly serves to 
an
el the ultra-violetdivergen
es from the interior modes in the �eldtheoreti
 approa
h[42,43℄. The observed dis
rep-an
y of 1% to the �eld-theoreti
 results probably
an be attributed to the error in the semi
lassi
alestimate of low-lying eigenvalues of the Lapla
eoperator { whi
h is of similar magnitude. Sin
eboundary 
onditions for the ele
tromagneti
 �eldnever are ideal, many 
orre
tions of even greatermagnitude would be required to des
ribe a morerealisti
 situation.The ele
tromagneti
 Casimir energy of any
losed 
avity with a smooth and perfe
tly metalli
boundary may be de
omposed into the 
ontribu-tion from two massless s
alar �elds { one satis-fying Diri
hlet's, the other satisfying Neumann'sboundary 
ondition on the surfa
e[21℄. Be
ausethe surfa
e is ideally thin and metalli
, 
ontribu-tions to the spe
tral density from arbitrarily short
losed paths that re
e
t o� (either side of) thesurfa
e 
an
el ea
h other. Semi
lassi
ally thereis no (potentially divergent) lo
al 
ontribution tothe Casimir energy from su
h an idealized surfa
ein the ele
tromagneti
 
ase { its lo
al surfa
e ten-sion in fa
t vanishes[21,44℄. Note that this 
an
el-lation is spe
ial for the ele
tromagneti
 �eld andin general does not o

ur for a massless s
alar�eld satisfying Neumann or Diri
hlet boundary
onditions on a spheri
al surfa
e[45,46,47℄. How-ever, the following semi
lassi
al argument indi-
ates the absen
e of ultraviolet divergent 
ontri-butions proportional to the "area" of an in�nites-imally thin (d � 1)-dimensional surfa
e: barringother s
ales, the lo
al 
ontribution from a smallsurfa
e element dA to the surfa
e divergen
e is



4proportional to �h
f(Ri=Rj) dA=Rd, where R isthe prin
ipal (lo
al) radius of 
urvature and fis a dimensionless fun
tion of ratios of the lo-
al 
urvatures only. The radii of 
urvature for
losed and arbitrary short 
lassi
al paths in theinterior and exterior that re
e
t just on
e o� thesame point on the in�nitesimally thin surfa
e areof equal magnitude but of opposite sign, regard-less of whether Neumann or Diri
hlet boundary
onditions are imposed at the surfa
e. The diver-gent surfa
e 
ontributions from inside and outsidethe in�nitesimally thin surfa
e [with the sameboundary 
ondition on both of its sides℄ thus 
an-
el pre
isely when d is odd. For spheri
al sur-fa
es this 
an
ellation has been expli
itly shownin ref.[42℄. In three dimensions, �nite Casimirenergies have also been expli
itly obtained fors
alar �elds and an in�nitesimally thin 
ylindri-
al 
avity[18,43,48℄. The previous argument indi-
ates that in odd dimensions surfa
e divergen
es
an
el lo
ally for any in�nitesimally thin (andsuÆ
iently smooth) boundary. It does not de-pend on the shape of the (smooth) boundary noron whether Diri
hlet or Neumann boundary 
on-ditions hold.The only subtra
tion in the spe
tral density re-quired for a �nite Casimir energy in the ele
tro-magneti
 
ase with idealized metalli
 boundary
onditions is the Weyl 
ontribution proportionalto the volume of the sphere. The latter 
orre-sponds to ignoring the m = (0; 0; 0) 
ontributionto the sum in Eq.(1). The remaining diÆ
ulty in
al
ulating the SCE of an integrable system is a
onvenient 
hoi
e of a
tion-angle variables. Fora massless s
alar in three dimensions satisfyingboundary 
onditions with spheri
al symmetry, anobvious set of a
tions is the magnitude of angu-lar momentum, I2 = L, one of the 
omponentsof angular momentum I3 = Lz and an a
tion I1asso
iated with the radial degree of freedom.Sin
e the azimuthal angle of any 
lassi
al orbitis 
onstant, the energy E = H(I1; I2) of a mass-less parti
le in a spheri
al 
avity of radius R doesnot depend on I3 = Lz . In terms of the previous
hoi
e of a
tions, the 
lassi
al energy is impli
itly

given by,�I1 + I2 ar

os� 
I2ER� = ER
 s1�� 
I2ER�2 :(2)The bran
hes of the square root and inverse 
osinein Eq.(2) are 
hosen so that I1 is positive. It is
onvenient to introdu
e dimensionless variables� = 2ER=(�h
) and z = 
I2=(ER); (3)for the total energy (in units of �h
=(2R)) andthe angular momentum (in units of ER=
) of anorbit. Note that z 2 [0; 1℄ and that the semi-
lassi
al regime formally 
orresponds to � � 1,i.e. to wavelengths that are mu
h less thanthe dimensions of the 
avity. Using Eq.(2) andthe de�nitions of Eq.(3) the angular frequen
yof the radial motion is !�1 = (�E=�I1)�1 =Rp1� (
I2=(ER))2=(�
) = (R=�
)p1� z2.With the help of Eq.(2) and the de�nitionsof Eq.(3), the semi
lassi
al expression in Eq.(1)for the Casimir energy of a massless s
alar �eldsatisfying Neumann or Diri
hlet boundary 
ondi-tions on a spheri
al surfa
e be
omes,E = �h
4�R Xm;n�00< he�i�2 �(n;m)�� Z 10d��3Z 10dzzp1�z2 ei�[n(p1�z2�z ar

os(z))+m�z℄� :(4)The integral over I3 has here been performedin stationary phase approximation. Be
ause theHamiltonian does not depend on I3, only peri-odi
 orbits with m3 = 0 
ontribute[26℄ in station-ary phase. Sin
e �I2 � I3 � I2, one has thatR dI3 = 2I2 = �z. The fa
tor 2I2 a

ounts forthe 2(l+ 1=2)-degenera
y of a state with angularmomentumL = l+1=2 = I2℄. By taking (4 times)the real part in Eq.(4) one 
an restri
t the sum-mations to non-negative integers and 
hoose thepositive bran
h of the square root- and inverse
osine- fun
tions in the exponent3. The Keller-Maslov index �(n;m) of a 
lassi
al se
tor depends3The primed sum now implies half the summand if one ofthe integers vanishes as well as the absen
e of the m =n = 0 term.



5on whether Neumann or Diri
hlet boundary 
on-ditions are satis�ed on the spheri
al shell and willbe determined presently.For positive integers m and n, the phase of theintegrand in Eq.(4) is stationary at z = �z(n;m) 2[0; 1℄ where,0 = �n ar

os(�z) +m�) �z(n;m) = 
os(m�=n); n � 2m > 1 : (5)Restri
tions on the values of m and n arise be-
ause ar

os(�z) 2 [0; �=2℄ on the 
hosen bran
h.The phase is stationary at 
lassi
ally allowedpoints only for se
tors with n � 2m > 1. Semi-
lassi
al 
ontributions to the integrals of otherse
tors arise due to the endpoints of the z-integration at z = 0 and z = 1 only. These"di�ra
tive" 
ontributions are of sub-leading or-der in an asymptoti
 expansion of the spe
traldensity for large �. Note thatm! m+n amountsto the 
hoi
e of another bran
h of the inverse 
o-sine.The 
lassi
al a
tion in se
tors with stationarypoints is,S
l(n;m) = �h�n sin(m�=n) (6)= (E=
)2nR sin(m�=n) = (E=
)L(n;m) ;where L(n;m) is the total length of the 
lassi-
al orbit. Some of these 
lassi
al periodi
 orbitsare shown in Fig. 1. The integer m in Eq.(6)gives the number of times an orbit 
ir
les the ori-gin. The integer n > 1 gives the number of timesan orbit tou
hes the spheri
al surfa
e. As indi-
ated in Fig. 1, the set of 
lassi
al periodi
 orbitsin the (n;m)-se
tor form a 
austi
 surfa
e and adouble 
overing is required for a unique phase-spa
e des
ription[36℄. The two sheets are joinedat the inner 
austi
 [indi
ated by a dashed 
ir-
le in Fig. 1℄ and at the outer spheri
al shell ofradius R. Every orbit that passes the spheri
alshell n times also passes through the 
austi
 ntimes. The 
ross-se
tion of a bundle of rays isredu
ed to a point at the spheri
al 
austi
 sur-fa
e. The 
austi
 thus is of se
ond order and as-so
iated with a phase loss of � every time it is
rossed. At ea
h spe
ular re
e
tion o� the outershell Diri
hlet boundary 
onditions require an ad-ditional phase loss of � whereas there is no phase


hange for Neumann boundary 
onditions. Alto-gether the Keller-Maslov index of se
tor (n;m)depends on n only and is given by,�(n;m) = � 0; for Diri
hlet b:
:2n; for Neumann b:
: : (7)For smooth surfa
es on whi
h the ele
tromag-neti
 �elds satis�es (ideal) metalli
 boundary 
on-ditions, the ele
tromagneti
 Casimir energy 
anbe viewed as due to two massless s
alar �elds,one satisfying Diri
hlet and the other Neumannboundary 
onditions[21℄. Due to the Keller-Maslov phases of Eq.(7) only se
tors (n;m) witheven n = 2k � 2m � 2 
ontribute[21℄ to the SCEin leading order of the asymptoti
 expansion forlarge �.
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a) b)

(2,1)
(3,1)

(4,1)

(5,1)

(5,2)Fig.1: Classi
al periodi
 rays of a ball and solid 
ylin-der. a) The shortest primitive rays 
orresponding towinding numbers (n;m) 2 f(2; 1); (3; 1); (4; 1)g. b)Primitive rays to winding numbers (n;m) = (5; 1)and (5; 2). Causti
 surfa
es are shown as thin 
ir
les.The dashed part of any traje
tory is on one sheet andits solid part on the other of a two-sheeted 
overingspa
e. The "phase spa
e" of the (5; 2) se
tor is in-di
ated the hat
hed area. Note that 
austi
s are of2nd order for a spheri
al 
avity but of 1st order for a
ylindri
al one.Note that se
tors with m = 0 or n = 0 havevanishing 
lassi
al a
tion and do not 
ontributeto the SCE. Eq.(5) implies that extremal pathsin the (n > 0;m = 0) se
tors have maximal angu-lar momentum 1 = �z = l
=(ER). These are great
ir
les that are wholly within the spheri
al shellin a plane perpendi
ular to the one under 
on-sideration, i.e. 
lassi
al orbits with I3 = Lz = 0.



6Be
ause the measure of the z-integral vanishes atz = 1 like p1� z these 
lassi
al paths are ex-tremal but not stationary. This 
an also be seenby expanding the exponent in Eq.(4) about thestationary point. For (n > 0;m > 0) the 
urva-ture of the exponent at �z(n;m) is �nite,�2��z2 [n(p1��z2��z ar

os(�z))+m��z℄ = nsin(m�n ) ; (8)whereas it diverges in se
tors with m = 0. Thebehavior of the exponent for z � 1 in this 
ase is,p1�z2�z ar

os(z) = 2p23 (1�z)3=2+O((1�z)5=2) :(9)Quadrati
 
u
tuations about the 
lassi
al orbitwith m = 0 thus have vanishing width and thesese
tors do not 
ontribute in stationary phase ap-proximation. To leading semi
lassi
al a

ura
y,the Casimir energy of a spheri
al 
avity with anideal metalli
 boundary therefore is,EballEM � �h
4�R Re 1Xn=1(1n + (�1)n) n=2Xm=1� Z 10d��3ein� sin(m�n )Z 10dzzp1�z2 ein�(z��z(n;m))22 sin(m�n )� �h
R " 1Xk=1 116�k4 + 1Xk=2 15p2256k4 k�1Xm=1 
os(m�2k )sin2(m�2k )#� 0:04668:::�h
R : (10)This semi
lassi
al estimate is only about1% larger than the best numeri
al value[6℄0:04617:::�h
=R for the ele
tromagneti
 Casimirenergy of a spheri
al 
avity with an in�nitesimallythin metalli
 surfa
e. Note that the 
ontributionfrom the (2k; k) se
tors had to be 
onsidered sep-arately in Eq.(10) sin
e the measure dzz vanishesat the stationary point �z(2k; k) = 
os(�=2) = 0of the integrand, whi
h is an endpoint of the in-tegration domain. As 
an be seen in Fig. 1a),the 
lassi
al rays of (2k; k)-se
tors go ba
k andforth between antipodes of the 
avity and passthrough its 
enter { they have angular momen-tum ~L = 0 = �z(2k; k).The shortest primitive orbits give somewhatless than half (1=(16�) � 0:02) of the total SCEof the spheri
al 
avity { mu
h less than the 92%

they 
ontribute to the Casimir energy of paral-lel plates. The main reason is that 
ontributionsonly drop o� as 1=k2 rather than like 1=k4 asfor parallel plates. The length of an orbit in the(4; 1)-se
tor (the ins
ribed square in Fig. 1a) fur-thermore is just a fa
tor of p2 longer than an(2; 1)-orbit [whi
h in turn is a fa
tor of 1=p2shorter than an (4; 2)-orbit℄. To estimate themagnitude of the 
ontribution of any parti
ularse
tor one has to take the available phase spa
eas well as the ray's length into a

ount. Thus, al-though the length of a (2k; 1)-orbit tends to 2�Rfor k ! 1, the asso
iated phase-spa
e (essen-tially given by the volume of the shell betweenthe boundary of the 
avity and the inner 
austi
)de
reases like 1=k2. This a

ounts for the rela-tively slow 
onvergen
e of the sum in Eq.(10). Toa
hieve an a

ura
y of 10�5, the �rst 50 terms ofthe sum were evaluated expli
itly and the remain-ing 
ontribution was estimated using Ri
hard-son's extrapolation method.4. The Cylindri
al CavityThe example of a spheri
al 
avity shows thatthe SCE in some instan
es is surprisingly a
-
urate. However, there evidently are systemswithout periodi
 
lassi
al orbits, su
h as the twoperpendi
ular planes investigated in[29℄, or theCasimir pendulum of[49℄. None of these systemsis integrable, and although there are no stationaryperiodi
 
lassi
al rays, periodi
 rays of extremal(shortest) length do exist. Semi
lassi
ally, su
hextremal periodi
 rays are asso
iated with di�ra
-tion[50,51℄. The in
lusion of di�ra
tive 
ontribu-tions in the semi
lassi
al estimate of Casimir en-ergies has so far only been attempted for a systemof spheres[52℄. Below it will be
ome evident thatdi�ra
tive 
ontributions also play a 
entral rolein the Casimir energy of a 
ylindri
al 
avity.The Casimir energy of a dilute 
ylindri
al gasof atoms was found to vanish in[53℄. A num-ber of 
al
ulations have 
on�rmed that there isno 
ontribution up to se
ond order in the re-
e
tion 
oeÆ
ients for diele
tri
s[31,32,33℄ andfor media where the speed of light on eitherside of an in�nitesimally thin 
ylindri
al bound-ary is the same[7,19,21℄. Balian and Duplantier



7even 
onje
tured that the Casimir energy of anideal metalli
 
ylindri
al 
avity may vanish[21℄to all orders of the multiple re
e
tion expan-sion. The non-vanishing Casimir energy of anideal metalli
 
ylindri
al 
avity[17℄ was subse-quently reanalyzed in the framework of zeta-fun
tion regularization. It was 
on�rmed thatthe Casimir energy of an ideal metalli
 
ylinderonly vanishes to leading order and that higherorders in the re
e
tion 
oeÆ
ients all give a non-vanishing 
ontribution[18℄. However, some math-emati
al prowess is required to analyti
ally provethe lowest order 
an
ellation in the �eld-theoreti
approa
h[33℄. That a number of separate 
ontri-butions should 
onspire to a null result withoutapparent physi
al reason has been 
onsidered bymany as somewhat "mysterious"[7,12℄. The sus-pi
ion that the reason 
ould be purely geometri
alis nourished by the fa
t that the �nite part of thepair-wise Van DerWaals intera
tion energy of adilute gas of atoms vanishes for a 
ylinder[31,53℄but not for other geometries. However, a 
arefulperturbative analysis reveals that the intera
tionenergy of any real dilute 
ylindri
al gas of atomsin
ludes a logarithmi
 divergen
e in addition todivergent 
ontributions proportional to the vol-ume and surfa
e area of the 
ylinder[31℄. Thesubtra
tion of this logarithmi
 divergen
e gener-ally is ambiguous and the Casimir energy of a
ylindri
al 
avity depends sensitively on proper-ties of its boundary[54℄ in the ultraviolet. A par-ti
ular boundary (say that of an in�nitesimallythin 
ylindri
al shell separating media with thesame speed of light) thus may 
on
eivably have a�nite (negative) Casimir energy, whereas a verysmall modi�
ation of this boundary (say in itsthi
kness) leads to a logarithmi
 divergen
e.The 
al
ulation below supports this possibility.The semi
lassi
al 
ontribution to the Casimir en-ergy due to any periodi
 
lassi
al ray is foundto vanish for a 
ylinder regardless of the re
e
-tion 
oeÆ
ients (without absorption). The SCEof a 
ylindri
al 
avity vanishes to all orders inthe re
e
tion 
oeÆ
ients for the same reason thatthe SCE of a spheri
al 
avity is positive { dueto relatively obvious opti
al phases. The semi-
lassi
al point of view thus gives a straightfor-ward and physi
ally a

eptable explanation for

the otherwise mysterious 
an
ellations. It alsoindi
ates that any additional phase 
hange at theboundary will destroy this deli
ate me
hanism.The �nite ele
tromagneti
 Casimir energy[17℄ ofa 
ylinder with idealized metalli
 boundary 
ondi-tions on the other hand is more diÆ
ult to explainsemi
lassi
ally. However, 
ontrary to a spheri-
al 
avity and in agreement with the perturba-tive result of[31℄, the semi
lassi
al analysis of theCasimir energy of a 
ylindri
al 
avity also en
oun-ters logarithmi
 divergent 
ontributions. The lat-ter are "di�ra
tive" end-point 
ontributions thatare ignored by the stationary phase approxima-tion. There is reason to believe[43,48℄ that thesubtra
tion of the logarithmi
 divergen
e by the
ontribution from "exterior" modes is the reasonfor the �nite Casimir energy of an idealized metal-li
 
ylinder[17℄.Let us now turn to the 
al
ulation of the ele
-tromagneti
 SCE of a long 
ylindri
al 
avity, orrather a very thin torus with one perimeter Lthat is mu
h larger than the other, L � 2�R.The latter is an integrable system. In the limitR=L ! 0, the only 
lassi
al traje
tories of rele-van
e are again those of Fig. 1 and the SCE of along 
ylindri
al 
avity 
an be obtained along sim-ilar lines as that of a spheri
al one { with someimportant modi�
ations. Due to the toroidalsymmetry of the (long) 
ylinder, the third a
-tion I3 = LpL=(2�) in this 
ase is proportionalto the 
onserved momentum pL along the axisof the (thin) 
ylinder and in Eq.(2) the energy Emust be repla
ed bypE2 � (2�
I3=L)2. The se
-ond a
tion furthermore is the angular momentumrather than just its magnitude. It again is 
onve-nient to 
onsider dimensionless quantities for thefra
tion�1 � x � 1 of the total momentumalongthe axis of the 
ylinder, for the ratio �1 � z � 1of the angular momentum to the maximal pos-sible angular momentum of a photon within the
avity and for its energy 0 � � < 1 in units of�h
=(2R),� = 2ER=(�h
); z = 
I2ERp1� x2 ; x = 2�
I3EL :(11)Pro
eeding as in the spheri
al 
ase, the semi
las-si
al expression in Eq.(1) for the SCE of a mass-less s
alar �eld satisfying Neumann or Diri
hlet



8boundary 
onditions on a 
ylindri
al surfa
e be-
omes,E
yl = �h
L16�2R2 Xm;n�00<he�i�2 �(n;m)Z 10d�Z 1�1dzZ 1�1dx ���3p1�z2ei�p1�x2[n(p1�z2�z ar

os(z))+m�z℄i :(12)The 
ontribution from periodi
 orbits that windaround the perimeter of the torus is negligiblein the R=L ! 0 limit and has been omittedin Eq.(12). The phase of the integrand in Eq.(12)is stationary at �x = 0 (
orresponding to pL = 0)and �z(n;m) given in Eq.(5). Sin
e the domainof integration for the z-variable di�ers from thespheri
al 
ase, se
tors with 1 < m < n � 1 havenon-trivial stationary points. The 
lassi
al a
tionof an (n;m)-se
tor is the same as for the spheri-
al 
avity and is given by Eq.(6). The 
u
tuationsabout su
h a 
lassi
al ray on the other hand arequite di�erent for 
ylindri
al and spheri
al 
avi-ties. To quadrati
 order in the 
u
tuations aboutthe stationary point �x = 0; �z(n;m), the a
tion forthe 
ylinder isS(n;m) � nh sin m�n (1�x22 )+(z � �z(n;m))22 sin m�n i: (13)The un
onstrained Gaussian integrals over z ��z(n;m) and x result in a fa
tor of 2�=(n�) instationary phase approximation. Note that thephases of ��=4 asso
iated with the two Gaussianintegrals 
an
el in this 
ase. Performing also theintegral over � in Eq.(12) �nally gives,E
yl = �h
L4�R2 1Xn=2 n�1Xm=1<�i e�i �2 �(n;m)n4 sin2 m�n : (14)The 
ru
ial di�eren
e to the previous 
ase of aspheri
al 
avity is the phase fa
tor of �i. It arisesbe
ause the 
u
tuations of a 
ylindri
al systemhave one fewer zero-mode than for a spheri
al one.[The Hamiltonian of a spheri
al 
avity does notdepend on I3 / Lz, whereas it does depend onI3 / pL for the 
ylindri
al 
avity. The 2� 2 Hes-sian matrix Hij = �2H=�Ii�Ij with 3 > i; j > 1has one zero mode for a spheri
al 
avity, but nonein the 
ylindri
al geometry. One 
an show[26℄

that this di�eren
e in zero modes implies an ad-ditional phase loss of �=2 for the periodi
 rays ofa 
ylindri
al 
avity.℄ This additional phase lossultimately is responsible for the vanishing of theSCE of a 
ylindri
al 
avity. To verify this we onlyneed to 
ompute the Keller-Maslov index �(n;m)for Neumann and Diri
hlet boundary 
onditions.The 
austi
s of the 
ylindri
al 
avity are of �rstorder rather than se
ond: the 
ross-se
tion of abundle of rays be
omes one-dimensional at the
austi
 { it is fo
ussed to a line rather than apoint. Taking into a

ount the phase retardationby �=2 every time a ray passes a �rst order 
aus-ti
, the analogous result to Eq.(7) for a 
ylindri-
al 
avity is,�(n;m) = � 3n; for Diri
hlet b:
:n; for Neumann b:
: (15)Contributions from paths with Neumann andDiri
hlet boundary 
onditions and an odd num-ber of re
e
tions 
an
el ea
h other and, as forthe spheri
al 
avity, only se
tors to even n =2k = 2; 4; : : : 
ontribute to the ele
tromagneti
SCE [this is quite generally so[21℄℄. Summing 
on-tributions to the ele
tromagneti
 Casimir energyfrom the two s
alars in Eq.(14) then gives thenull resultEEM
yl = �h
L32�R2 1Xk=1 2k�1Xm=1 < �i(�1)kk4 sin2 m�2k = 0 : (16)In Eq.(16) every periodi
 orbit gives a van-ishing 
ontribution to the SCE of a 
ylindri
al
avity. The 
an
ellation evidently depends ona deli
ate relation between the opti
al phases.It is interesting that a small additional phaseloss at ea
h re
e
tion o� the surfa
e results inanegative SCE for a 
ylindri
al 
avity, but thatthe Casimir energy vanishes as long as the abovephase relations hold { even if the magnitude ofthe re
e
tion 
oeÆ
ients is less than unity. TheSCE in this sense is in line with previous resultsfor[31,32,33,53℄ the Casimir energy of a dilute di-ele
tri
 
ylinder, and in fa
t supports the 
onje
-ture of Balian and Duplantier in[21℄. The non-vanishing Casimir energy of a 
ylindri
al 
avitywith ideal metalli
 boundary 
onditions on theother hand is not so easily explained by this semi-
lassi
al point of view.



9Some insight is gained by noting that the 
on-tribution of any se
tor to the SCE of a 
ylin-dri
al 
avity in Eq.(12) { even se
tors with non-trivial periodi
 
lassi
al paths { diverges. This isin marked 
ontrast to the spheri
al 
ase, wherethe 
ontribution from se
tors with non-trivial pe-riodi
 
lassi
al paths (
hara
terized by n � 2m >1) is �nite. The divergen
e is most readily madeexpli
it by s
aling �p1� x2 ! � in the integralof Eq.(12). Without ultraviolet 
uto�, the result-ing x-integral in this 
ase formally gives the fa
-tor,Z 1�1 dx(1� x2)2 � 1 ; (17)whose divergen
e is due to the behavior of theintegrand as x!�1. It may be regulated by in-trodu
ing an ultraviolet 
uto� 
 of some sort forthe energy integral [that is in the integral over�℄. As may be seen from Eq.(17), the regulatedintegral will always in
lude terms that are loga-rithmi
ally divergent as 
 ! 1. The subtra
-tion of a logarithmi
 divergen
e depends on de-tails of the 
uto� and thus is sensitive to ultra-violet properties of the boundary[38℄. The evalu-ation of (divergent) integrals in stationary phase
an be 
onsideredone way of subtra
ting the di-vergen
e. Be
ause the divergen
e is logarithmi
,the subtra
tion is by no means unique in this
ase. The presen
e of su
h a logarithmi
 diver-gen
e for 
ylindri
al 
avities was �rst emphasizedby Barton[31℄ in a perturbative treatment of a di-lute gas of atoms, although it also is evident in the
ontribution from interior modes to the Casimirenergy of an ideally metalli
 
ylinder[43℄.The foregoing is 
ompatible with previousresults[17,19,7℄ that the Casimir energy of a 
ylin-dri
al 
avity is �nite if the speed of light insideand outside itsin�nitesimally thin boundary sur-fa
e are the same. It for instan
e is negative foridealized metalli
 boundary 
onditions[17℄. TheCasimir energy in this 
ase apparently does notsu�er from any logarithmi
 divergen
es (or equiv-alently, from any pole ambiguities in zeta fun
-tion regularization). The Casimir energy is �-nite for the in�nitesimally thin boundary, be
ausethe logarithmi
 divergent 
ontribution from inte-rior modes is pre
isely 
an
elled by the similarly

logarithmi
 divergent 
ontribution from exteriormodes. Sin
e the boundary is in�nitesimally thinand the speed of light is the the same, a pre
ise
an
ellation is possible. The divergen
e reappearsfor a diele
tri
 
avity in va
uum with a lowerspeed of light in the diele
tri
[54℄. This o

ursfor a spheri
al as well as for a 
ylindri
al 
avity,but with an important di�eren
e: the divergen
ein the spheri
al 
ase is not logarithmi
 and maybe unambiguously subtra
ted[9℄. The subtra
tionof the logarithmi
 divergen
e in the Casimir en-ergy of the 
ylindri
al 
avity on the other handrequires some energy s
ale that des
ribes proper-ties of the boundary in the ultraviolet. An anal-ogous problem would be en
ountered for an idealmetalli
 boundary of �nite thi
kness[43℄ and infa
t for almost any small deviations from an ide-alized and in�nitesimally thin 
ylindri
al bound-ary between two media with identi
al speed oflight. Paradoxi
ally, de�ning the Casimir energyof a 
ylindri
al 
avity in a manner that does notdepend on the detailed ultraviolet properties ofits boundary appears all but impossible.It perhaps is worth mentioning in this regardthat the Casimir energy of a massless s
alarex
itation on the two-dimensional spheri
al ortoroidal boundaries is well-de�ned. For a spher-i
al shell and a very thin torus, this Casimir en-ergy has the same dependen
e on the dimensionsas the Casimir energies of the 
orresponding 
av-ities. For a two-sphere (S2) and a very thin torusT2 with L� 2�R these Casimir energies areES2 = 0 (18)ET2 = � �h
L4�3R2 �(3) � �0:0097 : : : �h
LR2 :Note that these Casimir energies of a mass-less s
alar on two-dimensional spheri
al andtoroidal surfa
es are exa
tly reprodu
edsemi
lassi
ally[26,39,16℄. The presen
e of s
alarsurfa
e modes therefore does not 
hange theCasimir energy of a spheri
al 
avity but 
ouldvery well 
ontribute to that of a 
ylindri
al one.The Casimir energy of a massless degree of free-dom on a torus not only is of the same form,but also of the same sign and order of magnitudeas the Casimir energy of an ideal metalli
 
ylin-dri
al 
avity[17,18℄. Su
h a 
ontribution from



10massless surfa
e modes thus might be importantfor a 
ylindri
al 
avity and would furthermore bediÆ
ult to separate from the 
ontribution due to
avity modes.5. Dis
ussionThe semi
lassi
al approximation to the Casimirenergy of a 
avity to leading order in
ludes only
ontributions from quadrati
 
u
tuations aboutstationary periodi
 
lassi
al rays. Sin
e all peri-odi
 rays lie in the interior, the SCE of a 
on-
ave 
avity to leading order depends on the exte-rior only indire
tly through re
e
tion 
oeÆ
ients.Periodi
 
lassi
al rays furthermore are of �nitelength. Their 
ontribution to the Casimir energythus is ultraviolet �nite. However, this approx-imation is sensible only if UV-divergent 
ontri-butions to the va
uum energy 
an be subtra
tedunambiguously from the spe
tral density. Log-arithmi
ally divergent 
ontributions to the va
-uum energy require a subtra
tion s
ale[38℄. Thelatter is a 
lear indi
ation that the subtra
tion
annot be universal sin
e it depends sensitivelyon the UV-properties of the boundary. Small
hanges in the boundary 
onditions in this 
asedo not ne
essarily 
orrespond to small 
hangesin the Casimir energy. The lo
al properties ofa boundary the va
uum energy 
an be sensitiveto apparently in
lude its thi
kness: whereas theCasimir energy of a 
ylindri
al 
avity with anideal and in�nitesimally thin metalli
 boundaryis �nite[17℄ to any order in the (real) re
e
tion
oeÆ
ients[18℄, a logarithmi
 dependen
e on the
uto� appears in more realisti
 situations[31,43℄.An ambiguous subtra
tion is also required in thesemi
lassi
al approximation. The absen
e of anylogarithmi
 divergen
e for the in�nitesimally thinboundary apparently is due to a 
an
ellation byexterior modes. Su
h a 
an
ellation of logarith-mi
 singularities 
an o

ur when exterior and in-terior modes depend on pre
isely the same s
ale,the radius R of the 
ylindri
al 
avity in this 
ase.Although the two logarithmi
 divergen
es (ea
hproportional to �h
L=R2 for dimensional reasons)
an
el in the idealized situation, they would notif the boundary is of �nite thi
kness.We 
onsidered only the semi
lassi
al Casimir

energy (SCE) of a spheri
al and of a toroidal 
av-ity with ideal metalli
 boundary 
onditions, thatis with real re
e
tion 
oeÆ
ients of unit magni-tude. These are integrable systems and the SCEwas derived from the "dual" des
ription of thespe
tral density in terms of periodi
 paths on in-variant tori[23,35℄. The winding numbers of a pe-riodi
 orbit are dual to the quantum numbers ofa mode. In stationary phase approximation theSCE of a spheri
al 
avity is positive and 
oin
ideswith the �eld theoreti
 value for an in�nitesimallythin metalli
 boundary to about 1%. The 
al
ula-tion is rather short and straightforward and leadsto the 
onvergent sum of Eq.(10). Ea
h term inthis sum may be interpreted as the 
ontributionfrom a 
lass of periodi
 rays. A few the shorterprimitive periodi
 rays are depi
ted in Fig. 1. The
ontribution from any se
tor with 
lassi
al peri-odi
 rays is �nite in this 
ase. Divergent 
ontri-butions are restri
ted to se
tors with no 
lassi
alrays.The 
ontribution from periodi
 orbits to theSCE of a 
ylindri
al 
avity with an ideal metal-li
 boundary on the other hand vanishes to allorders in the number of re
e
tions. This o

ursdue to an overall phase 
hange by an odd multi-ple of �=2 for any 
lassi
al periodi
 ray. Restri
t-ing to just two re
e
tions, this null result agreeswith �eld theoreti
 
al
ulations for in�nitesimallythin metalli
 boundaries[7,19,?, 21,55℄. The van-ishing SCE appears to support the 
onje
ture ofBalian and Duplantier that the Casimir energyof a metalli
 
ylindri
al 
avity may vanish. How-ever, 
ontrary to the spheri
al 
ase, the 
ontribu-tions of any 
lassi
al se
tor to the SCE of a 
ylin-dri
al 
avity diverges. Without subtra
tion of theUV-divergent part, the (�nite) semi-
lassi
al 
on-tribution to the va
uum energy we obtained is notvery meaningful. Unfortunately the divergen
e ofthe integral in Eq.(17) in
ludes a logarithmi
 de-penden
e on the 
uto�. The subtra
tion of UV-divergent 
ontributions to the Casimir energy ofa 
ylinder thus is sensitive to a s
ale and 
an-not be a
hieved in a universal fashion. The log-arithmi
 dependen
e on the 
uto� was �rst ob-served by Barton[31℄ in his perturbative 
al
u-lation of the va
uum energy for a (dilute) gasof 
ylindri
al shape to lowest order in the �ne



11stru
ture 
onstant. Semi
lassi
ally this wouldalso 
orrespond to 
onsidering the 
ontributionfrom rays with only two re
e
tions (n = 2). Thatthe UV-subtra
tions are fragile and depend 
ru-
ially on the UV-properties of the boundary isalso observed when the speed of light within andoutside an in�nitesimally thin 
ylindri
al bound-ary di�er[54℄. In the ele
tromagneti
 
ase, thelogarithmi
 divergen
es of exterior and interior
ontributions to the va
uum energy of a metalli

ylinder 
an
el for an in�nitesimally thin metalli
boundary[43℄. However, they in general 
annotbe unambiguously subtra
ted[48℄.These examples of a spheri
al- and 
ylindri
al
avity show that the SCE is quite reasonable andis rather simple to 
al
ulate when the Casimirenergy is robust, that is, when the subtra
tionsdo not depend on �ne-tuning of the ultravioletbehavior of the boundary. The 
lassi
al periodi
paths that 
ontribute to the SCE of a 
on
ave
avity in stationary phase approximation lie en-tirely within the 
avity. Their 
ontribution de-pends on the exterior of the 
avity through re-
e
tion 
oeÆ
ients only. It has been argued forsome time that a Casimir energy obtained with-out expli
it in
lusion of exterior modes (as for aparallelepiped[14,16℄) is all but meaningless[12℄.The 
riterion favored here[31,26℄ 
onsiders anyde�nition of a Casimir energy reasonable (andin prin
iple physi
ally realizable) in whi
h theUV-divergen
es of the va
uum energy have beensubtra
ted in a universal fashion, that is with-out expli
it referen
e to UV-properties of theboundary. The subtra
tion may (and in gen-eral will) in
lude divergent 
ontributions from ex-terior modes. The Casimir energy of a paral-lelepiped 
an be 
onsidered a 
ase in point: asPower[56℄ did for just two slabs, one 
an alwaysassemble (at most 8) parallelepipeds to a 
ube of�xed dimensions { the Casimir energy of an in-dividual parallelepiped[14,16℄ in this 
ase re
e
ts
hanges in the va
uum energy of the whole 
ubeas the four dividing planes are moved adiabat-i
ally. By moving interior surfa
es of the 
ube(that in prin
iple 
ould have �nite thi
kness), onemeasures only that �nite part of its va
uum en-ergy that depends on the dimensions of the indi-vidual parallelepipeds. By 
ontrast, it is diÆ
ult

to imagine that global 
hanges in a va
uum en-ergy are measurable (or even physi
ally relevant)if their �niteness depends 
ru
ially on lo
al 
har-a
teristi
s of the system[26℄. Perhaps somewhatsurprisingly, the ele
tromagneti
 Casimir energyof a very long 
ylindri
al 
avity does not appearto be robust in this sense, whereas the ele
tro-magneti
 Casimir energy of a spheri
al 
avity is.Apart from relating Casimir energies to opti-
al properties, one of the advantages of a semi-
lassi
al des
ription would be the possibility tomodel more realisti
 (but robust) physi
al sys-tems. The previous 
onsiderations are readily ex-tended to diele
tri
s by using appropriate 
om-plex and in general frequen
y-dependent re
e
-tion 
oeÆ
ients. In the 
ase of diele
tri
 slabsMilton has shown[12℄ that Lifshitz's theory[10,11℄may be reprodu
ed in this manner. Finite tem-perature is in
orporated[57℄ by allowing periodi
rays to also wrap around a �
titious periodi
 ex-tra dimension of 
ir
umferen
e �h
=(kT ). Finitetemperature 
orre
tions thus are small if some
lassi
al periodi
 paths are mu
h shorter than this
ir
umferen
e. At room temperature the lengthof a periodi
 ray in
reases by of about 7:6 mi-
rons every time it winds about the temperaturedire
tion. Temperature 
orre
tions therefore aretiny for most nanometer s
ale experiments4 but
ould be of greater interest in some astrophysi
al
onsiderations (3oK � 1mm). Corre
tions due tosurfa
e roughness generally will be more impor-tant in te
hnologi
al appli
ations. Many 
lassi
almodels for di�usive re
e
tion from rough surfa
esexist and Lambert's Law is easily in
orporated inthe semi
lassi
al approa
h by appropriate re
e
-tion 
oeÆ
ients. The dependen
e on the wave-length perhaps 
an be modelled by a sto
hasti
term of the a
tion that a

ounts for 
u
tuationsin the length of a 
lassi
al periodi
 orbit uponre
e
tion from rough surfa
es. Apart from anaverage 
hange in length, this leads to a dampingterm of the form �(�LE=�h
)2=2 in the 
lassi
ala
tion, where (�L)2 is the varian
e in the lengthof the periodi
 orbit. Assuming that this varian
eis itself proportional to the length of the orbit,4The 
laim that this 
orre
tion has been measured tosuÆ
ient a

ura
y[2℄ to distinguish between di�erent ap-proa
hes has re
ently been disputed[58℄.



12surfa
e roughness 
an semi
lassi
ally perhaps bemodelled by the modi�ed dispersion
p(E) = E + i"E2=(�h
) ; (19)where " is a typi
al length s
ale for the (sto
has-ti
) roughness of the surfa
e. The predominante�e
t of the modi�ed dispersion of Eq.(19) is that
ontributions to the Casimir energy from wavelengths �� " are very mu
h suppressed. A sim-ilar 
on
lusion may be drawn from a re
ent and
onsiderably more sophisti
ated analysis[59℄.A
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