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| Green’s Function Approach

The multiple scattering approach starts from the
well-known formula for the vacuum energy or
Casimir energy (for simplicity here we restrict
attention to a massless scalar field)(7 Is the
“Infinite” time that the configuration exists)
[Schwinger, 1975]

E=—TrinG,
2T

where & Is the Green’s function,

(-0 +V)G =1, +BC. |
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| Ambigulty In formula

The above formula for the Casimir energy Is
defined up to an infinite constant, which can be
at least partially compensated by inserting a
factor as do Kenneth and Klich:

( _

Here (5, satisfies, with the same boundary

conditions as G, the free equation
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| T-matrix

Now we define the T-matrix,
T=8S—-1=V({1+GV)"
If the potential has two disjoint parts,
Vi=V+W
It IS easy to show that

T =Vi+WV)(1=GoT)(1-GoTiGoTs) (1 —GoTs),

where |
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Interaction In terms of 7, or G,

Thus, we can write the general expression for the
Interaction between the two bodies (potentials) In
two alternative forms:

Eio = —QLTr hl(l — GoTlGQTQ)
T
1
= ——1Irin(1 — V1G1 VLG
)7 H( 1“1V2 2)7

where

Gi= (1+GV;) "Gy, i=1,2

—
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| Multipole expansion

To proceed to apply this method to general
bodies, we use an even older technigue, the
multipole expansion. Let’s illustrate this with a

2 + 1 dimensional version, which allows us to
describe cylinders with parallel axes. We seek an
expansion of the free Green’s function

. . !
6z|w||1[' R—r1'|

4rlr — R — 1/

dk?«’ ik, (z—Z—2'
:/ e go(r, — R, — 1)),

G()(R—i—r/ — I‘) —

2T



| Reduced Green’s function

ko,J_) e—ikJ_-RJ_eikJ_-(I'J_—I'/J_)
L R L / _ (
go(re =Ry — 1)) / (2m)2 kT 4+ K2+ (2

As long as the two potentials do not overlap, so

that we haver, — R, — 1/, ## 0, we can write an
expansion in terms of modified Bessel functions:

goes =R —x) = 3 In(er)e™ L s )e "

m,m’

ngz,m’(liR)v /{Q — kg T C2° |
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I Expression forg’

By Fourier transforming, and using the definition
of the Bessel function

2T
déd
ime(kT) _ / _¢ e—zmgbezkrcosqb7
0 27T

we easily find

0 /(/{R):i/ dk k Jm_m/(kR)Jm(kr)Jm(kr’)

Jm.m 27

()"

o B (KR). |
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| Discrete.matrix realization

Thus we can derive an expression for the
Interaction between two bodies, in terms of
discrete matrices,

Eint 1

¢ = d¢ di. In det (1 _ §0T1§0TT2)
L 82

where the 7" matrix elements are given by

Tmm’ — /d’l“’l“d¢/d7"/ r/ d¢’]m(/{7a)6—im¢]m/(/{T/)eim’gb’

XT(r,¢;r",¢). |
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| Interaction between cylinders

Figure 1. Geometry of two cylinders (or two

spheres) with radil « and b, respectively, and dis- |

tances between their centers of B > a - Hgvmensov.wnzes



| Semitransparent cylinders

Consider two parallel semitransparent cylinders,
of radil a and b, respectively, lying outside each
other, described by the potentials

‘/1 — )\15(T o CL), ‘/2 — )\26(7J - b)v

with the separation between the centers R
satisfying R > a + b. It Is easy to work out the
scattering matrix in this situation,

I (ka)

1+ Nal,y,(ka)K,,(ka) |
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| Cylinder interaction

Thus the Casimir energy per unit length is

1 O
¢ =— dr ktrin(l — A),
4 0
where A = B(a)B(b), in terms of the matrices

Mal? (ka)
1+ MNal,y(ka)K, (ka)

—
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| Weak-coupling

In weak coupling, the formula for the interaction
energy between two cylinders is

)\1)\2&[) 9
¢ = = Z / dezx K . (z)

mm— O

x 1% (ra/R)I2,(xb/R).
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| Power.series expansion

One merely exploits the small argument
expansion for the modified Bessel functions
I, (xa/R) and I, (xb/R):

2@ = (5)" X2 (5)

n=0

where the coefficients Z,, ,, are

22(m-+n) F(m +n+ %)

:\/7_Tn!(2m+n)!r(m+n+1)° |
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| Closed.form result

In this case we get an amazingly simple result

QE:

Aadob 1 — ( a

2n
a D Pn )
AmR? 2 = R) ()

where 1 = b/a, and where by inspection we
identify the binomial coefficients

P(p) = Z (Z) M%-



| Closed form result (cont.)

Remarkably, it is possible to perform the sums,
so we obtain the following closed form for the
Interaction between two weakly-coupled

cylinders:

e~ - (52 ) (- (Y )

—1/2



PFA

We note thatinthellmt R —a—b0=d — 0, d
being the distance between the closest points on
the two cylinders, we recover the proximity force
theorem In this case

)\1)\2 2ab 1
— d b.
D) ==\ R o 1<

The rate of approach is given by

@Nl 1|ulu2dN1 R? —aR+a* d

U i R 4a(R—a) R |
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c/U

Figure 2: Plotted Is the ratio of the exact inter-

action energy of two weakly-coupled cylinders to |

the proximity force approximation



I b/a = 99
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Figure 3: Plotted Is the ratio of the exact inter-

action energy of two weakly-coupled cylinders to |

the proximity force approximation



| Cylinder/plane interaction

By the method of images, we can find the
Interaction between semitransparent cylinder and
a Dirichlet plane is

1 0.9

¢ =— kdrtrIn(1 — B(a)),

47T 0
where B(a) IS given above. In the
strong-coupling limit this result agrees with that
given by Bordag, because

~ ~ 1
tr B = tr B’ B = Kim(KR) L, :
) Km(lia) + (K’ ) (/iCL)
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I Exact cylinder/plane energy

In exactly the same way, we can obtain a
closed-form result for the interaction energy
between a Dirichlet plane and a weakly-coupled
cylinder of radius a separated by a distance R/2.

The result Is again quite simple:

- 1 -3/2

@ 20\ 2
- I
¢ 47 R? ( R )

In the limit as d — 0, this agrees with the PFA:

) = - Y2 _l
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| Comparison of PFA and exact
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| 3-dimensional formalism

The three-dimensional formalism is very similar.
In this case, the free Green’s function has the
representation

Go(R+1' —r1) = Z]z 1|C17) g (2|C|7") Y, (8) Vi ()

Im,l'm

Xglm,l’m’(R) .
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| Reduced Green’s function

The reduced Green’s function can be written in

the form

0 B oy [ (dk) e™® g (kr)jp(kr')

SR = nE ! [ e i
X Vi (K) Yy (K).
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Now we use the plane-wave expansion once
again, this time for e’*R,

eik.R _ 47_‘_ Z Z.l//jl//(kR)Yé//m//(R)}/}* (R),

//m//
l//m//

SO now we encounter something new, an
Integral over three spherical harmonics,

/ dl;}/}m(l;)y;km’(l;)yﬁm”(l;) — Clm,l’m’,l”m”y

—

QV meeting, OU, March 2008



| Wigner coefficients

where

o 2L+ 1) (20 + 1)(21" 4+ 1)
Cm ') 1 m)! — —1 mm \/(
Im.l'm! ] (—1) y

l l/ Z// l Z/ l//
X .
000 m m' m”

The three-; symbols (Wigner coefficients) here

vanish unless [ + 1" +[" is even.
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| Reduced Green’s function

This fact is crucial, since because of it we can
follow the previous method of writing j;»(kR) in
terms of Hankel functions of the first and second
kind, using the reflection property of the latter,

WY (kR) = (—1)"h\Y (—kR), and then extending
the k integral over the entire real axis to a
contour integral closed in the upper half plane.

/2
g?m,l’ — 47‘(’@ ‘ Z Clm I'm/ l’/ 1
XK1/ \C\R) e (R). |
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| Casimir.interaction of spheres

For the case of two semitransparent spheres that
are totally outside each other,

Vi(r) = Mo(r —a), Va(r') = X0 (r' — b),

In terms of spherical coordinates centered on
each sphere, It Is again very easy to calculate the
scattering matrices,

Yim () Y3, () |
>< )
— 1+ MaKiq5(/Cla) L d
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| Scattering matrix element

and then the harmonic transform is very similar
to that seen for the cylinder, (k = |(|)

() = (X)) Vi () Bt )Y (T3 (5,

Aam z+1/2(m a)
2|1¢) 1+ MaK10(/¢la)f412(]Cla)
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| Interaction energy

Let us suppose that the two spheres lie along the
z-axis, that is, R = Rz. Then we can simplify the
expression for the energy somewhat by using

Vi (0 = 0) = 0,04/ (20 + 1)/4m. The formula for
the energy of interaction becomes

1 o0
E = —/ dctrin(1 — A),
2T 0

where the matrix

Al irm! = Ommy E By (@) By, (b) |
l//




Bym(a) = \/%z‘””\/ (20 +1)(2I' + 1) ZZ;(QZ” + 1)

frreNfeorr Kpriapp(CR)Aali 5(Ca)
000 J\m-—-mO0 ) 14+ Nalyii/2(Ca)Kpt/2(Ca,

Note that the phase always cancels in the trace.
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| Weak coupling

For weak coupling, a major simplification results
because of the orthogonality property,

l / !/ / 1144
1
[ ' [ ' — Sy 1< a
Z m —m () m —m 0 20 + 1

m=—I

= A1‘“2/ dwz 21 4+ 1)(20' + 1)(20" + 1)

l/l//

l l/ l//
X (O 0 O) KZQ”+1/2( )[l+1/2(xa/R)IZQ’+1/2(xb/R)'|
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| Power.series expansion

As with the cylinders, we expand the modified
Bessel functions of the first kind in power series
ina/R,b/R < 1. This expansion yields the infinite
series

n

Nadob ab <~ 1 a2n-m)/ b\ 2"
o ()
imR R <= n+1 S: "\ R (R)

m=0

where by inspection of the first several D, ,,
coefficients we can identify them as

2m + 1



| Closed.form

and now we can immediately sum the expression
for the Casimir interaction energy to give the
closed form

a 2
EAmem<1 (#)>.

16m R




PFA

Again, whend = R — a — b < a, b, the proximity
force theorem Is reproduced:

)\1)\2&[)
167 R
However, as the figures demonstrate, the

approach is not very smooth, even for

equal-sized spheres. The ratio of the energy to
the PFAis (b/a = )

E In[(1 + p)*/2p]
Z 1  d<a,b.
U Ind/R o |
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a = b; truncation at 100 shown

E/U

Figure 4: Plotted Is the ratio of the exact interac-
tion energy of two weakly-coupled spheres to the
proximity force approximation
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Figure 5: Plotted Is the ratio of the exact interac-
tion energy of two weakly-coupled spheres to the
proximity force approximation




| Exact plane/sphere energy

In just the way Iindicated above, we can obtain a
closed-form result for the interaction energy
between a weakly-coupled sphere and a Dirichlet
plane. Using the simplification that

l
[ | [ 1
—1)™ — O
Z( ) (mmO) (OOO) "o,

m=—I

we can write the interaction energy In the form

Aa OO T
E — 27TR dﬂjz Ql—|—1 Kl/Q l—|—1/2 ( R)l




Then in terms of R/2 as the distance between
the center of the sphere and the plane, the exact
Interaction energy IS

b= 2A7r (2)2 | — (21a/R)2’

which as a — R/2 reproduces the proximity
force limit, contained in the (ambiguously
defined) PFA formula



| Exact energy vs. PFA
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Figure 6: Plotted Is the ratio of the exact interac-
tion energy of a weakly-coupled sphere above a
Dirichlet plane to the PFA.



| Comments and Prognosis

» The methods proposed are in fact not
particularly novel, and illustrate the abllity of
physicists to continually rediscover old
methods.

» What is new is the abillity, partly due to
enhancement in computing power and
flexibility, to evaluate continuum determinants
(or infinitely dimensional discrete ones)
accurately numerically.

» This will make it possible to compute Casimir

forces for geometries previously inaccessible. |
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| New results

» |t is indeed remarkable, If perhaps not
surprising In retrospect, to see that closed
form expressions can be obtained for the
Interaction between spheres and between
parallel cylinders in weak coupling.

» These results demonstrate most conclusively
the unreliability of the proximity force
approximation (of course, the proximity force
theorem holds true).

» Further applications of our method will be
given in the talks by Shajesh and Prachi. |
(See also Jef’s talk.)
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