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Green’s Function Approach

The multiple scattering approach starts from the
well-known formula for the vacuum energy or
Casimir energy (for simplicity here we restrict
attention to a massless scalar field)(τ is the
“infinite” time that the configuration exists)
[Schwinger, 1975]

E =
i

2τ
Tr ln G,

where G is the Green’s function,

(−∂2 + V )G = 1, +BC.
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Ambiguity in formula

The above formula for the Casimir energy is
defined up to an infinite constant, which can be
at least partially compensated by inserting a
factor as do Kenneth and Klich:

E =
i

2τ
Tr ln GG−1

0 .

Here G0 satisfies, with the same boundary
conditions as G, the free equation

−∂2G0 = 1.
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T -matrix

Now we define the T -matrix,

T = S − 1 = V (1 + G0V )−1.

If the potential has two disjoint parts,

V = V1 + V2

it is easy to show that

T = (V1+V2)(1−G0T1)(1−G0T1G0T2)
−1(1−G0T2),

where

Ti = Vi(1 + G0Vi)
−1, i = 1, 2.
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Interaction in terms of Ti or Gi

Thus, we can write the general expression for the
interaction between the two bodies (potentials) in
two alternative forms:

E12 = − i

2τ
Tr ln(1 − G0T1G0T2)

= − i

2τ
Tr ln(1 − V1G1V2G2),

where

Gi = (1 + G0Vi)
−1G0, i = 1, 2.
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Multipole expansion

To proceed to apply this method to general
bodies, we use an even older technique, the
multipole expansion. Let’s illustrate this with a
2 + 1 dimensional version, which allows us to
describe cylinders with parallel axes. We seek an
expansion of the free Green’s function

G0(R + r
′ − r) =

ei|ω||r−R−r
′|

4π|r − R − r′|

=

∫

dkz

2π
eikz(z−Z−z′)g0(r⊥ − R⊥ − r

′
⊥),
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Reduced Green’s function

g0(r⊥ − R⊥ − r
′
⊥) =

∫

(d2k⊥)

(2π)2

e−ik⊥·R⊥eik⊥·(r⊥−r
′

⊥
)

k2
⊥ + k2

z + ζ2
.

As long as the two potentials do not overlap, so
that we have r⊥ −R⊥ − r

′
⊥ 6= 0, we can write an

expansion in terms of modified Bessel functions:

g0(r⊥ − R⊥ − r
′
⊥) =

∑

m,m′

Im(κr)eimφI ′m(κr′)e−im′φ′

×g̃0
m,m′(κR), κ2 = k2

z + ζ2.
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Expression for g0
m,m′

By Fourier transforming, and using the definition
of the Bessel function

imJm(kr) =

∫ 2π

0

dφ

2π
e−imφeikr cos φ,

we easily find

g̃0
m,m′(κR) =

1

2π

∫

dk k

k2 + κ2
Jm−m′(kR)

Jm(kr)Jm(kr′)

Im(κr)Im(κr′)

=
(−1)m′

2π
Km−m′(κR).
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Discrete matrix realization

Thus we can derive an expression for the
interaction between two bodies, in terms of
discrete matrices,

E ≡ Eint

L
=

1

8π2

∫

dζ dkz ln det
(

1 − g̃0T̃1g̃
0⊤T̃2

)

,

where the T̃ matrix elements are given by

T̃mm′ =

∫

dr r dφ

∫

dr′ r′ dφ′Im(κr)e−imφIm′(κr′)eim′φ′

×T (r, φ; r′, φ′).
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Interaction between cylinders

θ θ′

d

| |a b

Figure 1: Geometry of two cylinders (or two

spheres) with radii a and b, respectively, and dis-

tances between their centers of R > a + b.QV meeting, OU, March 2008 – p.13/45



Semitransparent cylinders

Consider two parallel semitransparent cylinders,
of radii a and b, respectively, lying outside each
other, described by the potentials

V1 = λ1δ(r − a), V2 = λ2δ(r
′ − b),

with the separation between the centers R
satisfying R > a + b. It is easy to work out the
scattering matrix in this situation,

(t1)mm′ = 2πλ1aδmm′

I2
m(κa)

1 + λ1aIm(κa)Km(κa)
.
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Cylinder interaction

Thus the Casimir energy per unit length is

E =
1

4π

∫ ∞

0

dκ κ tr ln(1 − A),

where A = B(a)B(b), in terms of the matrices

Bmm′(a) = Km+m′(κR)
λ1aI2

m′(κa)

1 + λ1aIm′(κa)Km′(κa)
.
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Weak-coupling

In weak coupling, the formula for the interaction
energy between two cylinders is

E = −λ1λ2ab

4πR2

∞
∑

m,m′=−∞

∫ ∞

0

dx xK2
m+m′(x)

×I2
m(xa/R)I2

m′(xb/R).

QV meeting, OU, March 2008 – p.16/45



Power series expansion

One merely exploits the small argument
expansion for the modified Bessel functions
Im(xa/R) and Im′(xb/R):

I2
m(x) =

(x

2

)2|m| ∞
∑

n=0

Z|m|,n
(x

2

)2n

,

where the coefficients Zm,n are

Zm,n =
22(m+n) Γ

(

m + n + 1
2

)

√
π n! (2m + n)! Γ(m + n + 1)

.
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Closed form result

In this case we get an amazingly simple result

E = −λ1aλ2b

4πR2

1

2

∞
∑

n=0

( a

R

)2n

Pn(µ),

where µ = b/a, and where by inspection we
identify the binomial coefficients

Pn(µ) =
n
∑

k=0

(

n

k

)2

µ2k.
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Closed form result (cont.)

Remarkably, it is possible to perform the sums,
so we obtain the following closed form for the
interaction between two weakly-coupled
cylinders:

E = −λ1aλ2b

8πR2

[(

1 −
(

a + b

R

)2
)(

1 −
(

a − b

R

)2
)]−1/2

.
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PFA

We note that in the limit R − a − b = d → 0, d
being the distance between the closest points on
the two cylinders, we recover the proximity force
theorem in this case

U(d) = −λ1λ2

32π

√

2ab

R

1

d1/2
, d ≪ a, b.

The rate of approach is given by

E

U
≈ 1 − 1 + µ + µ2

4µ

d

R
≈ 1 − R2 − aR + a2

4a(R − a)

d

R
.
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a = b
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Figure 2: Plotted is the ratio of the exact inter-

action energy of two weakly-coupled cylinders to

the proximity force approximation QV meeting, OU, March 2008 – p.21/45



b/a = 99
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Figure 3: Plotted is the ratio of the exact inter-

action energy of two weakly-coupled cylinders to

the proximity force approximation QV meeting, OU, March 2008 – p.22/45



Cylinder/plane interaction

By the method of images, we can find the
interaction between semitransparent cylinder and
a Dirichlet plane is

E =
1

4π

∫ ∞

0

κ dκ tr ln(1 − B(a)),

where B(a) is given above. In the
strong-coupling limit this result agrees with that
given by Bordag, because

tr Bs = tr B̃s, B̃mm′ =
1

Km(κa)
Km+m′(κR)Im′(κa).
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Exact cylinder/plane energy

In exactly the same way, we can obtain a
closed-form result for the interaction energy
between a Dirichlet plane and a weakly-coupled
cylinder of radius a separated by a distance R/2.
The result is again quite simple:

E = − λa

4πR2

[

1 −
(

2a

R

)2
]−3/2

.

In the limit as d → 0, this agrees with the PFA:

U(d) = − λ

64π

√
2a

d3/2
.

Note again that this form is ambiguous: the prox-

QV meeting, OU, March 2008 – p.24/45



Comparison of PFA and exact
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3-dimensional formalism

The three-dimensional formalism is very similar.
In this case, the free Green’s function has the
representation

G0(R + r
′ − r) =

∑

lm,l′m′

jl(i|ζ|r)jl′(i|ζ|r′)Y ∗
lm(r̂)Yl′m′(r̂′)

×glm,l′m′(R).
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Reduced Green’s function

The reduced Green’s function can be written in
the form

g0
lm,l′m′(R) = (4π)2il

′−l

∫

(dk)

(2π)3

eik·R

k2 + ζ2

jl(kr)jl′(kr′)

jl(i|ζ|r)jl′(i|ζ|r′)
×Ylm(k̂)Y ∗

l′m′(k̂).
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Now we use the plane-wave expansion once
again, this time for eik·R,

eik·R = 4π
∑

l′′m′′

il
′′

jl′′(kR)Yl′′m′′(R̂)Y ∗
l′′m′′(k̂),

so now we encounter something new, an
integral over three spherical harmonics,

∫

dk̂Ylm(k̂)Y ∗
l′m′(k̂)Y ∗

l′′m′′(k̂) = Clm,l′m′,l′′m′′,
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Wigner coefficients

where

Clm,l′m′,l′′m′′ = (−1)m′+m′′

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×
(

l l′ l′′

0 0 0

)(

l l′ l′′

m m′ m′′

)

.

The three-j symbols (Wigner coefficients) here

vanish unless l + l′ + l′′ is even.
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Reduced Green’s function

This fact is crucial, since because of it we can
follow the previous method of writing jl′′(kR) in
terms of Hankel functions of the first and second
kind, using the reflection property of the latter,
h

(2)
l′′ (kR) = (−1)l′′h

(1)
l′′ (−kR), and then extending

the k integral over the entire real axis to a
contour integral closed in the upper half plane.

g0
lm,l′m′(R) = 4πil

′−l

√

2|ζ|
πR

∑

l′′m′′

Clm,l′m′,l′′m′′

×Kl′′+1/2(|ζ|R)Yl′′m′′(R̂).
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Casimir interaction of spheres

For the case of two semitransparent spheres that
are totally outside each other,

V1(r) = λ1δ(r − a), V2(r
′) = λ2δ(r

′ − b),

in terms of spherical coordinates centered on
each sphere, it is again very easy to calculate the
scattering matrices,

T1(r, r
′) =

λ1

a2
δ(r − a)δ(r′ − a)

×
∑

lm

Ylm(r̂)Y ∗
lm(r̂′)

1 + λ1aKl+1/2(|ζ|a)Il+1/2(|ζ|a)
,
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Scattering matrix element

and then the harmonic transform is very similar
to that seen for the cylinder, (k = i|ζ|)

(t1)lm,l′m′ =

∫

(dr)(dr′)jl(kr)Y ∗
lm(r̂)jl′(kr′)Yl′m′(r̂′)T1(r, r

′)

= δll′δmm′(−1)lλ1aπ

2|ζ|
I2
l+1/2(|ζ|a)

1 + λ1aKl+1/2(|ζ|a)Il+1/2(|ζ|a)
.
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Interaction energy

Let us suppose that the two spheres lie along the
z-axis, that is, R = Rẑ. Then we can simplify the
expression for the energy somewhat by using
Ylm(θ = 0) = δm0

√

(2l + 1)/4π. The formula for
the energy of interaction becomes

E =
1

2π

∫ ∞

0

dζ tr ln(1 − A),

where the matrix

Alm,l′m′ = δm,m′

∑

l′′

Bll′′m(a)Bl′′l′m(b)
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Bll′m

Bll′m(a) =

√
π√

2ζR
i−l+l′

√

(2l + 1)(2l′ + 1)
∑

l′′

(2l′′ + 1)

×
(

l l′ l′′

0 0 0

)(

l l′ l′′

m −m 0

)

Kl′′+1/2(ζR)λ1aI2
l′+1/2(ζa)

1 + λ1aIl′+1/2(ζa)Kl′+1/2(ζa)

Note that the phase always cancels in the trace.
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Weak coupling

For weak coupling, a major simplification results
because of the orthogonality property,

l
∑

m=−l

(

l l′ l′′

m −m 0

)(

l l′ l′′′

m −m 0

)

= δl′′l′′′
1

2l′′ + 1
, l ≤ l′.

E = −λ1aλ2b

4R

∫ ∞

0

dx

x

∑

ll′l′′

(2l + 1)(2l′ + 1)(2l′′ + 1)

×
(

l l′ l′′

0 0 0

)2

K2
l′′+1/2(x)I2

l+1/2(xa/R)I2
l′+1/2(xb/R).
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Power series expansion

As with the cylinders, we expand the modified
Bessel functions of the first kind in power series
in a/R, b/R < 1. This expansion yields the infinite
series

E = −λ1aλ2b

4πR

ab

R2

∞
∑

n=0

1

n + 1

n
∑

m=0

Dn,m

( a

R

)2(n−m)
(

b

R

)2m

where by inspection of the first several Dn,m

coefficients we can identify them as

Dn,m =
1

2

(

2n + 2

2m + 1

)

,
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Closed form

and now we can immediately sum the expression
for the Casimir interaction energy to give the
closed form

E =
λ1aλ2b

16πR
ln

(

1 −
(

a+b
R

)2

1 −
(

a−b
R

)2

)

.
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PFA

Again, when d = R − a − b ≪ a, b, the proximity
force theorem is reproduced:

U(d) ∼ λ1λ2ab

16πR
ln(d/R), d ≪ a, b.

However, as the figures demonstrate, the
approach is not very smooth, even for
equal-sized spheres. The ratio of the energy to
the PFA is (b/a = µ)

E

U
= 1 +

ln[(1 + µ)2/2µ]

ln d/R
, d ≪ a, b.
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a = b; truncation at 100 shown
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Figure 4: Plotted is the ratio of the exact interac-

tion energy of two weakly-coupled spheres to the

proximity force approximation QV meeting, OU, March 2008 – p.39/45



b/a = 49
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Figure 5: Plotted is the ratio of the exact interac-

tion energy of two weakly-coupled spheres to the

proximity force approximation QV meeting, OU, March 2008 – p.40/45



Exact plane/sphere energy

In just the way indicated above, we can obtain a
closed-form result for the interaction energy
between a weakly-coupled sphere and a Dirichlet
plane. Using the simplification that

l
∑

m=−l

(−1)m

(

l l l′

m −m 0

)(

l l l′

0 0 0

)

= δl′0,

we can write the interaction energy in the form

E = − λa

2πR

∫ ∞

0

dx

∞
∑

l=0

√

π

2x
(2l+1)K1/2(x)I2

l+1/2

(

x
a

R

)

.

QV meeting, OU, March 2008 – p.41/45



Then in terms of R/2 as the distance between
the center of the sphere and the plane, the exact
interaction energy is

E = − λ

2π

( a

R

)2 1

1 − (2a/R)2
,

which as a → R/2 reproduces the proximity
force limit, contained in the (ambiguously
defined) PFA formula

U = − λ

8π

a

d
.
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Exact energy vs. PFA
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Figure 6: Plotted is the ratio of the exact interac-

tion energy of a weakly-coupled sphere above a

Dirichlet plane to the PFA. QV meeting, OU, March 2008 – p.43/45



Comments and Prognosis

The methods proposed are in fact not
particularly novel, and illustrate the ability of
physicists to continually rediscover old
methods.

What is new is the ability, partly due to
enhancement in computing power and
flexibility, to evaluate continuum determinants
(or infinitely dimensional discrete ones)
accurately numerically.

This will make it possible to compute Casimir
forces for geometries previously inaccessible.

QV meeting, OU, March 2008 – p.44/45



New results

It is indeed remarkable, if perhaps not
surprising in retrospect, to see that closed
form expressions can be obtained for the
interaction between spheres and between
parallel cylinders in weak coupling.

These results demonstrate most conclusively
the unreliability of the proximity force
approximation (of course, the proximity force
theorem holds true).

Further applications of our method will be
given in the talks by Shajesh and Prachi.
(See also Jef’s talk.)
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