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Reported by Geyer, Klimchitskaya, Mostepanenko
(Phys. Rev. D, 72, 085009)

Permittivity of a conducting material in local formalism (Drude):

ε(iζ) = 1 +
ε∞ − 1

1 + ζ2/ω2
0

+
4πσ

ζ

ε∞, ω0 material parameters. σ: conductivity. ζ is imaginary
frequency: iω = ζ.

σ > 0 (however small): limζ→0 ε = ∞;
σ = 0: limζ→0 ε = ε∞;
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Transverse magnetic (TM) reflection coefficient between
vacuum and material characterised by ε(iζ):

rTM =
εκ−

√
κ2 + ζ2(ε− 1)

εκ +
√

κ2 + ζ2(ε− 1)
;

κ2 = k2
⊥ + ζ2 = −k2

z . (ẑ normal to surface)
k⊥: wave vector ‖ surface

Thus:

σ > 0 (however small): limζ→0 rTM = 1;
σ = 0: limζ→0 rTM = (ε∞ − 1)/(ε∞ + 1) < 1;
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For most semiconductors at room temperature the following
holds:

ζ1 = 2πT � 4πσ > 0 (1)

It follows then that:

rTM(0, κ) = 1; rTM(iζ1, κ) = (ε∞ − 1)/(ε∞ + 1);

If σ(T ) → 0 linearly or faster as T → 0, (1) holds for all
sub-room temperatures as well.
As T → 0, rTM becomes truly discontinuous as ζ1 → 0.
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Taken at face value this is problematic...

(Helmholz) free energy at finite T (Lifshitz 1956), TM
mode:

F =
T
2π

∞∑
m=0

′ ∫ ∞

ζm

dκκ ln(1− r2
TMe−2κa)

where ζm = 2πmT ; m ∈ N.
As T → 0, sum becomes Riemann integral

∞∑
m=0

′

→
∫ ∞

0
dm
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Temperature correction is difference between sum and
integral, given by Euler-Maclaurin formula.

Requires summand to be continuous...
...so must separate out discontinuous addition: difference
between m = 0 terms with rTM = 1 and
rTM = (ε− 1)/(ε + 1).
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Discontinuity gives additional correction term:

F ∼ T
4π

{∫ ∞

0
dκκ ln

1− ( ε∞−1
ε∞+1)2e−2κa

1− e−2κa

}

=
T

16πa3 [Li3

(
(ε∞ − 1)2

(ε∞ + 1)2

)
− ζ(3)]

Entropy contribution at T = 0:

S = −
(

∂F
∂T

)
V

= const. > 0

⇒ Violation of 3rd law of thermodynamics (Nernst’s
theorem)!
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Mostepanenko et al.’s solution: ignore the conductivity

ε(iζ) = 1 +
ε∞ − 1

1 + ζ2/ω2
0

+
4πσ

ζ



Casimir effect between poor conductors: parallel plates

Temperature anomaly for semiconductors

Temperature anomaly for semiconductors

Mostepanenko et al.’s solution: ignore the conductivity

ε(iζ) = 1 +
ε∞ − 1

1 + ζ2/ω2
0

+
4πσ

ζ

Simen Eklingsen
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Simen Eklingsen
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What does all this mean physically?

TM at ζ = 0 corresponds to an electrostatic field.
So rTM(ζ = 0) = 1 corresponds to perfect screening of
electostatic field from interior of material by free charges.
When conductivity decreases, electrons can no longer
perfect the screening
⇒ rTM(ζ = 0) should drop below 1 at some point.
If so, the form ε(iζ) ∼ 4πσ/ζ behaviour breaks down for
very small σ.
Intuitively: ε should approach ε∞ smoothly.
Intuitively: Infinitesimal conductivity cannot give rise to
large correction.
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Alternative?
Mostepanenko et.al.ś solution also unsatisfactory:
ignores a physical effect which is evidently present.

My conclusion: one should look for intermediate solutions.
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Spatial dispersion

Assume free electrons behave like an electron-hole
plasma.

Response to external field: Debye-Hückel screening.
Introduce longitudinal permittivity:

εL = ε̄(iζ)(1 + (kλ)−2).

k = |k|; λ is Debye-Hückel screening length:

λ =

√
ε̄T

4πe2(ne + nh)

e: elemetary charge, ne, nh: number density of electrons,
holes. ε̄ is permittivity without conductivity term.
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Spatial dispersion

k-dependent permittivity:

εij = εL
kikj

k2 + ε̄(δij −
kikj

k2 )

Solving Maxwell’s equations on both side of interface,
joining solutions (Kliewer & Fuchs 1968).
Gives TM surface impedance. Inserted into reflection
coefficient.
(TE mode remains unchanged)
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Spatial dispersion

Result:

rTM =
ε̄κ

√
1 + (k⊥λ)−2 −

√
κ2 + ζ2(ε̄− 1)

ε̄κ
√

1 + (k⊥λ)−2 +
√

κ2 + ζ2(ε̄− 1)
;

For σ → 0: goes smoothly to

rTM =
ε̄κ−

√
κ2 + ζ2(ε̄− 1)

ε̄κ +
√

κ2 + ζ2(ε̄− 1)
;

All terms m > 1 must remain unchanged ⇒ theory applies
only for 2πT � 4πσ.
Have found possible solution which is intermediate
between extremes and thermodynamically consistent.
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Remaining problems

Calculations do not fit experimental data:

Experiment by Chen, Mohideen et.al. (Phys. Rev. B 76,
035338)
Probable solution: free electrons don’t behave as a plasma (?)
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Remaining problems

Incomplete:
Valid in high temperature/long separation domain. Theory
to include electrodynamic screening would be nice.

Effects “leak” into m > 0 terms: must be manually
prescribed away.
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Thank you
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