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Abstract

1 We calculate the lateral Casimir force between corrugated parallel plates,
described by δ-potentials, while interacting with a scalar field, using the
multiple scattering formalism.

2 The contributions to the Casimir energy due to un-corrugated parallel plates
is treated as a background from the outset.

3 We derive the leading, and next to leading, order contribution to the lateral
Casimir force for the case when the mean of the corrugation amplitudes are
small in comparison to the mean distance between the plates.

4 The analogous calculation for the electromagnetic case will decrease the
error in the theoretical calculation sufficiently for comparison with
experiments.
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Motivation

1997: Lateral force between two corrugated plates was studied by
Golestanian et. al.. (Incidentally, this whole project was motivated after
attending a talk by Golestanian, in Leipzig, where he talked about the rack
and pinion arrangement.)
1999: Experimental study of lateral forces conducted by Mohideen et. al..
They studied the arrangement of a plate, with small sinusoidal
corrugations, and a large sphere to study the nontrivial boundary
dependence of the Casimir force.
2001: Emig et. al. evaluated analytic expressions for the lateral Casimir
force between two corrugated parallel plates, in leading order, for the case
when the corrugation amplitudes were small in comparison to the distance
between the plates.
2002: The theoretical analysis of Mohideen’s experimental data presented
by Mostepanenko et. al. using PFA technique.
2007: Debate and controversy between Rodrigues et. al. and
Mostepanenko et. al..
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Experimental parameters

h = 60 nm,

d = 1.1 µm,

a = 0.1 − 0.9 µm.

This corresponds to

k0a = 0.6 − 5.1,

h

a
= 0.07 − 0.6,

h

d
= 0.05.
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Multiple scattering formalism

Let us consider a scalar field, φ(x), interacting with a scalar background
field, V (x), described by the Lagrangian density

L(φ(x)) = −
1

2
∂µφ(x)∂µφ(x) −

1

2
V (x)φ(x)2.

Multiple scattering formalism: As described in the previous talk by Kim,
the energy of the vacuum in the presence of the background field is given
by the expression

E =
i

2τ
Tr lnGG−1

0 ,
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2
∂µφ(x)∂µφ(x) −

1

2
V (x)φ(x)2.

Multiple scattering formalism: As described in the previous talk by Kim,
the energy of the vacuum in the presence of the background field is given
by the expression

E =
i

2τ
Tr lnGG−1

0 ,

where, the Green’s function G is defined by the equation

−
[

∂2 − V (x)
]

G (x , x ′) = δ(0)(x − x ′),

and G0 is the corresponding Green’s function when the background is
switched off.
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Statement of the problem

Corrugated, semi-transparent, parallel plates, are described by

Vi (z , y) = λi δ(z − ai − hi (y)), i = 1, 2, a = a2 − a1 > 0,

where, the functions hi (y) describe the corrugations.
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Vi (z , y) = λi δ(z − ai − hi (y)), i = 1, 2, a = a2 − a1 > 0,

where, the functions hi (y) describe the corrugations.
Total Casimir energy for a configuration when one of the plate is laterally
shifted by an amount y0,

h1(y + y0), h2(y),

can be written in the form

∆E (a, hi , y0) = E − E (0)(a) = E1(a, h1) + E2(a, h2) + E12(a, hi , y0),

where, E12, isolates the interaction energy due to the lateral shift.
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Lateral Casimir force is defined as the negative change in energy due to
the lateral shift:

F‖(a, hi , y0) = −
∂

∂y0
∆E = −

∂E12

∂y0
.
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where, E12, isolates the interaction energy due to the lateral shift.
Lateral Casimir force is defined as the negative change in energy due to
the lateral shift:

F‖(a, hi , y0) = −
∂

∂y0
∆E = −

∂E12

∂y0
.

Notation: ∆ means deviation from the background, or a reference.
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Casimir energy contributing to the lateral force

Using the multiple scattering formalism the contribution to energy due to
the lateral shift is given by

∆E12 = −
i

2τ
Tr ln

[

1 − G1∆V1G2∆V2

]

,

where,
∆Vi(z , y) = Vi(z , y) − V

(0)
i (z).

The Green’s function associated with the background satisfies the
differential equation,

(−∂2 + V
(0)
1 + V

(0)
2 )G (0) = 1.

and the differential equations for Gi ’s are

[

−∂2 + V
(0))
1 + V

(0)
2 + ∆Vi

]

Gi = 1.
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Corrugations as a perturbation

In those cases when the corrugations can be treated as a small
perturbation over the background, (hi ≪ a), we can approximate

∆V
(1)
i (z , y) = −hi (y)

∂

∂z
V

(0)
i (z) = −λihi (y)

∂

∂z
δ(z − ai) + O(h/a)2,

Gi∆Vi =
[

1 + G (0)∆Vi

]−1
G (0)∆Vi = G (0)∆V

(1)
i + O(h/a)2,
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perturbation over the background, (hi ≪ a), we can approximate

∆V
(1)
i (z , y) = −hi (y)

∂

∂z
V

(0)
i (z) = −λihi (y)

∂

∂z
δ(z − ai) + O(h/a)2,

Gi∆Vi =
[

1 + G (0)∆Vi

]−1
G (0)∆Vi = G (0)∆V

(1)
i + O(h/a)2,

Thus, to the leading order in the perturbation, the interaction energy will
be

∆E
(2)
12 =

i

2τ
Tr

[

G (0)∆V
(1)
1 G (0)∆V

(1)
2

]

,

where, G (0), are the Green’s functions when the corrugations are switched
off, which is already available to us in closed form from our earlier work.
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Leading order contribution

The interaction energy can be written in the form

∆E
(2)
12

Lx

=

∫ +∞

−∞

dk1

2π

∫ +∞

−∞

dk2

2π
h̃1(k1 − k2) h̃2(k2 − k1)L(2)(k1, k2)

where h̃i (k) are the Fourier transforms of the functions hi (y), which
describe the corrugations on the parallel plates,

h̃i (k) =

∫ +∞

−∞
dy e−iky hi (y)

and the kernel L(2)(k1, k2) is suitably expressed in the form

L(2)(k1, k2) = −
1

4π

∫ ∞

0
κ̄ d κ̄ I (2)(κ1, κ2),

where, κ2
i = κ̄2 + k2

i , and

I (2)(κ1, κ2) = λ1λ2

[

∂

∂z

∂

∂z̄
g (0)(z , z̄;κ1) g (0)(z̄ , z ;κ2)

]

z̄=a1,z=a2

.

The g (0)’s are available in closed form.
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Leading order contribution (contd)

Using the reciprocal symmetry in the Green’s function we learn

I (2)(κ1, κ2) = I (2)(κ2, κ1).

We evaluate the derivatives in the expression for I (2)(κ1, κ2), which will be
described by Prachi Parashar in the corresponding calculation for studying
Non Contact Gears, as

I (2)(κ1, κ2) = −
λ1

2κ1

λ2

2κ2

e−a(κ1+κ2)

∆1∆2
[

κ2
1

(

1 +
λ1

2κ1

)(

1 +
λ2

2κ1

)

+ κ1κ2

(

1 +
λ1

2κ1

)(

1 +
λ2

2κ2

)

+κ1κ2

(

1 +
λ1

2κ2

)(

1 +
λ2

2κ1

)

+ κ2
2

(

1 +
λ1

2κ2

)(

1 +
λ2

2κ2

)

]

where

∆i = 1 +
λ1

2κi

+
λ1

2κi

+
λ1

2κi

λ2

2κi

(

1 − e−2κi a
)
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Leading order contribution: Dirichlet limit

For the case of Dirichlet limit (λ1,2 → ∞) the expression for I (2)(κ1, κ2)
takes the relatively simple form

I
(2)
D

(κ1, κ2) = −
κ1

sinhκ1a

κ2

sinhκ2a

where the subscript D stands for Dirichlet limit.
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takes the relatively simple form

I
(2)
D

(κ1, κ2) = −
κ1

sinhκ1a

κ2

sinhκ2a

where the subscript D stands for Dirichlet limit.
Using the above expression we can evaluate the interaction energy to be

∆E
(2)
12

Lx

=

∫ +∞

−∞

dk1

2π

∫ +∞

−∞

dk2

2π
h̃1(k1 − k2) h̃2(k2 − k1)L

(2)
D

(k1, k2)

where

L
(2)
D (k1, k2) =

1

4π

∫ ∞

0
κ̄ d κ̄

κ1

sinhκ1a

κ2

sinhκ2a
.
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Sinusoidal corrugations: Energy to leading order

For the particular case of sinusoidal corrugations we will have

h1(y) = h1 sin[k0(y + y0)], h2(y) = h2 sin[k0y ],

where, k0 = 2π/d is the wave-number corresponding to the corrugation
wavelength d . The Fourier transform is

h̃1(k) = h1
2π

2i

[

e ik0y0δ(k − k0) − e−ik0y0δ(k + k0)
]
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h1(y) = h1 sin[k0(y + y0)], h2(y) = h2 sin[k0y ],

where, k0 = 2π/d is the wave-number corresponding to the corrugation
wavelength d . The Fourier transform is

h̃1(k) = h1
2π

2i

[

e ik0y0δ(k − k0) − e−ik0y0δ(k + k0)
]

which lets us write the expression for energy as

∆E
(2)
12

LxLy

=
π2

240 a3

h1

a

h2

a
A

(1,1)
D (k0a) cos k0y0,

where

A
(1,1)
D (t0) =

15

π4

∫ ∞

0
s̄ d s̄

∫ +∞

−∞
dt

s

sinh s

s+

sinh s+

where, s2 = s̄2 + t2, and s2
± = s̄2 + (t ± t0)

2.
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Sinusoidal corrugations: Force to leading order

The lateral Casimir force evaluates to

F‖

(

k0a,
hi

a
, k0y0

)

= 2 |F
(0)
⊥ |

h1

a

h2

a
k0a sin(k0y0)A

(1,1)
D (k0a),

where, |F
(0)
⊥ | is the magnitude of the normal Casimir force between two

uncorrugated parallel plates.

2 4 6 8 10
t0

0.2

0.4

0.6

0.8

1

1.2

1.4

AD
H11L
@t0D
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Fourth order perturbation

The second correction to the lateral Casimir force is more laborious, but
conceptually similar. It evaluates to

F
(4)
‖

(

k0a,
hi

a
, k0y0

)

= 2|F
(0)
⊥ | k0a sin(k0y0)A

(4)
D (k0a)

A
(4)
D (k0a) =

h1

a

h2

a

15

4

[

h2
1

a2
A

(3,1)
D (k0a) +

h2
2

a2
A

(1,3)
D (k0a)

−2
h1

a

h2

a
cos k0y0 A

(2,2)
D

(k0a)

]

.

A
(3,1)
D =

1

2π4

∫ ∞

0
s̄ d s̄

∫ +∞

−∞
dt

s

sinh s

s+

sinh s+

[

4
s

tanh s

s−

tanh s−

+2
s

tanh s

s+

tanh s+
− s2 − s2

−

]

= A
(1,3)
D (t0)

A
(2,2)
D =

1

π4

∫ ∞

0
s̄ d s̄

∫ +∞

−∞
dt

[

s2

sinh2 s

s2
−

sinh2 s−
+ 2

s2

tanh2 s

s+

sinh s+

s−

sinh s−

]
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Numerical plots

The following are the plots for A(3,1)(k0a) and A(2,2)(k0a).
The plot in red is A(1,1)(k0a).
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Note that

A(3,1)(k0a) − A(1,1)(k0a) > 0

A(2,2)(k0a) − A(1,1)(k0a) < 0.
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Lateral Casimir Force

Let us now confine to the case: h1 = h2, and k0y0 = π

2

F‖

(

k0a,
h

a
,
π

2

)

= 2k0a |F
(0)
⊥ |

h2

a2

[

A
(1,1)
D (k0a) +

15

2

h2

a2
A

(3,1)
D (k0a)

]

2 4 6 8 10
t0

0.2

0.4

0.6

0.8

1

1.2

1.4

AH4L@t0D

h
a

= 0.05, 0.10, 0.15, 0.20, 0.25.
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Conclusions and Things to do

1 We have calculated the lateral Casimir force in the leading order, and
in the next to leading order, when the corrugation amplitudes on
parallel plates can be treated as a small perturbation relative to the
distance between the plates.
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2 To do: We need to compare our results with those got by the PFA
technique.
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The talk was based on:

Inés Cavero-Peláez, Kimball A. Milton, Prachi Parashar, K. V.
Shajesh, Casimir torque between corrugated surfaces: I. Next to
leading order contribution, Under preparation.

Inés Cavero-Peláez, Kimball A. Milton, Prachi Parashar, K. V.
Shajesh, Casimir torque between corrugated surfaces: II. Non contact
gears, Under preparation.
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A(4)(t0) verses A(2)(t0):
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F
(4)
PER(t0) verses F

(4)
PFA(t0):
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F
(4)
PER(t0) verses FPFA(t0):
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