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Abstract. The Casimir effect, reflecting quantum vacuum fluctuations in the
electromagnetic field in a region with material boundaries, has been studied both
theoretically and experimentally since 1948. The forces between dielectric and metallic
surfaces both plane and curved have been measured at the 10 to 1 percent level
in a variety of room-temperature experiments, and remarkable agreement with the
zero-temperature theory has been achieved. In fitting the data various corrections
due to surface roughness, patch potentials, curvature, and temperature have been
incorporated. It is the latter that is the subject of the present article. We point
out that, in fact, no temperature dependence has yet been detected, and that the
experimental situation is still too fluid to permit conclusions about thermal corrections
to the Casimir effect. Theoretically, there are subtle issues concerning thermodynamics
and electrodynamics which have resulted in disparate predictions concerning the nature
of these corrections. However, a general consensus has seemed to emerge that suggests
that the temperature correction to the Casimir effect is relatively large, and should be
observable in future experiments involving surfaces separated at the few micrometer
scale.
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1. Introduction

About the same time that Schwinger and Feynman were inventing renormalized quan-
tum electrodynamics, Casimir discovered that quantum electrodynamic fluctuations re-
sulted in macroscopic forces between conductors and dielectrics [1]. The theory was a
natural outgrowth of the Casimir-Polder theory of the retarded dispersion force between
molecules [2]. The general theory for the forces between parallel dielectrics was worked
out by Lifshitz and collaborators [3], who also included temperature corrections, which
were considered further by Sauer [4] and Mehra [5]. Some years later, the whole theory
was rederived by Schwinger, DeRaad, and Milton [6].

The early experiments on Casimir forces were rather inconclusive — for a review
see [7]. However, the corresponding Lifshitz theory was verified rather impressively
by Sabisky and Anderson [8], so there could hardly be any doubt of the validity of
the essential ideas. Starting about a decade ago, modern experiments by Lamoreaux
9, 10, 11, 12], Mohideen and collaborators [13, 14, 15], and by Erdeth [16] brought
the experimental measurement of the Casimir force between curved metal surfaces
(mapped to the plane geometry by the proximity approximation [17, 18]) into the percent
accuracy region. (Exact results have now apparently rendered the use of the proximity
approximation, which cannot be extended beyond leading order, unnecessary. See, for
example, [19, 20, 21].) Application of such Casimir forces to nanoelectromechanical
devices have been suggested by experiments at Bell Labs and Harvard [22, 23, 24]. Only
one experiment so far, of limited accuracy (~ 15%), has employed parallel plates [25].
The difficulty of maintaining parallelism in that geometry limits the accuracy of the
experiment, but the forces are much larger than those between a sphere and a plate,
so the forces can, in principle, be determined at much larger separations. Proposals to
perform measurements of the force between a cylinder and a plane [26] and between
eccentric cylinders [27] have advantages because the forces are stronger than between
a sphere and a plane, yet the difficulties in assuring parallelism are not so severe as
with two plane surfaces. The most precise experiments so far, based on both static and
dynamical procedures between a plate and a spherical surface, have been performed at
Purdue [28, 29, 30], where the accuracy is claimed to be better than 1% at separations
down to less than 100 nm.

All present experiments agree well with the zero-temperature Casimir theory when
surface roughness and finite conductivity corrections are included [31, 32]. The issue
about which controversy has recently erupted is the temperature dependence. (For
recent statements of both sides of the controversy, see [30, 33, 34, 35, 36].) All
experiments reported to date have been conducted at room temperature, so there is
no direct evidence for or against any particular model of the temperature dependence.
Indirect evidence for this dependence has been inferred based on the nonzero shift in
the theoretical Casimir force between the surfaces due to the difference between the
force at zero temperature and at 300 K. Surprisingly, this temperature shift is not so
straightforwardly computed as one would have at first suspected.
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It is the purpose of the present paper to frame the question of the temperature
dependence of the Casimir force in the context of the history of the subject and
the present experimental constraints, as well as to point out ways of reconciling the
ambiguities both from the theoretical and experimental sides. In the following section
we review the standard approach given in [6] for both dielectric and metal surfaces.
Then, in section 3 we give the arguments why the transverse electric (TE) zero mode
should not be included, and how this impacts the temperature dependence of the force,
and the resulting impact on the free energy and entropy. Other theoretical arguments for
and against this point of view are discussed in section 4. The status of the experimental
situation, and the possibility of dedicated experiments to search for the temperature
dependence of the Casimir effect, will be reviewed in section 5. Finally, some new
calculations are presented in section 6 in the hope of providing signatures to help resolve
the controversy.

2. Conventional temperature approach

The zero-temperature Casimir effect between parallel conducting plates, or between
parallel dielectrics, is very well understood, and is not controversial. The formula for
the latter, which includes the former as a singular limit, may be derived by a multitude
of formalisms, which will not be reviewed here [6, 31, 37, 38, 39]. For a system of parallel
dielectric media, characterized by a permittivity

€1, z < 0,
e(z) =14 &3, 0<z<a, (2.1)
£9, a <z,

where the various permittivities are functions of frequency, the Lifshitz force per unit
area on one of the surfaces is at zero temperature

1 o0 o0
pT=0— __—_ d / dk? ky(d ™t +d' ! 2.2
pe Ao ke, (22)
where ( is the imaginary frequency, ( = —iw, and the longitudinal wavenumber is

Ki = 4/ k’i + <2€i(i<), (23)

while the transverse electric (TE) and transverse magnetic (TM) Green’s functions are
characterized by the denominators

/ / / /
K3 + K1 K3+K2e2“3“ 1 d = K3+ K1 K3+ Ky 9.4
K3 — K1 K3 — K2 ’ Kjy — K| K3 — K

d = 1, (24)

respectively, where k; = k;/¢;.

The attractive Casimir pressure between parallel perfectly conducting planes
separated by a vacuum space of thickness a is obtained by setting €15 — 0o and e3 = 1.
In that case the TE and TM contributions are equal, and we have

1 [ > 4k 1 [ ¢3 m2he
Po=—— [ d AP = —— =—
“7 82 ), ¢ e e —1 T w2 fy e 1T T 240a"

(2.5)
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which is Casimir’s celebrated result [1].
The controversy surrounds the question of how to incorporate thermal corrections
into the latter result. At first glance, the procedure to do this seems straightforward. It
is well-known that thermal Green’s functions must be periodic in imaginary time, with
period § = 1/T [40]. This implies a Fourier series decomposition, rather than a Fourier
transform, where in place of the imaginary frequency integral in (2.5) we have a sum
over Matsubara frequencies
2 = 4m?m?
m 3

that is, the replacement
¢ 1N,
/0 o B mzzo (2.7)

the prime being an instruction to count the m = 0 term in the sum with half weight.

(2.6)

This prescription leads to the following formula for the Casimir pressure between perfect
conductors at temperature T,

1 &, [~ 1
T _ / 2
P = 47T5a3m220 /m Y dyey—l’ (2.8)

where

4ra
= —. 2.9
t 3 (2.9)

From this it is straightforward to find the high and low temperature limits,

1 1 ¢
Pl ——— (38— ——(14+t+—= e 4 2.10
47r6a3C( ) 27r6a3( +t+ 2)6 , [ < 4ma, (2.10a)
2 16a* 240 a
PTN— i Z _ 22 mB/a 4ra. 2.10b
240a4[+354 T B ’ g dme (2100

These are the results found by Sauer [4] and Mehra [5], and by Lifshitz [3]. The two
limits are connected by the duality symmetry found by Brown and Maclay [41]. The
pressure may be obtained by differentiating the free energy,

0
P=——F 2.11
aa Y ( )
which takes the following form for low temperature (now omiting the exponentially small
terms)
w2 ¢(3) w2
Fro——r— 22734 71 T<1 2.12
2088 2n 0 15 HSS (2.12)
from which the entropy follows,
9 3((3) 0 47, 4

which vanishes as T' goes to zero, in accordance with the third law of thermodynamics,
the Nernst heat theorem.
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3. Exclusion of TE zero mode

However, there is something peculiar about the procedure adopted above for a perfect
metal. (This seems first to have been appreciated by Bostrom and Sernelius [42].) It has
to do with the transverse electric mode of zero frequency, which we shall refer to as the
TE zero mode. If we examine the zero frequency behavior of the reflection coefficients
for a dielectric appearing in (2.4), we see that providing (?c(i¢) — 0 as ¢ — 0, the
longitudinal wavenumber x; — k as ( — 0, and hence d — oo as ( — 0. This means
that there is no TE zero mode for a dielectric. This statement does not appear to be
controversial [43]. However, if a metal is modeled as the ¢ — oo limit of a dielectric,
the same conclusion would apply. Because that would spoil the concordance with the
third law noted in the previous section, the prescription was promulgated in [6] that
the ¢ — oo limit be taken before the ( — 0 limit. But, of course, a real metal is not
described by such a mathematical limit, so we must examine the physics carefully.

A simple model for the dielectric function is the plasma dispersion relation,

w2

ew)=1- w—’;, (3.1)
where w, is the plasma frequency. For this dispersion relation, the condition ¢%¢(i¢) — 0
fails to hold as ¢ — 0, and the idealized prescription result, namely the contribution of
the TE zero mode, holds. However, real metals are not well described by this dispersion

relation. Rather, the Drude model,
2

5(i<):1+m, (3.2)

where the relaxation frequency < represents dispersion, very accurately fits optical
experimental data for the permittivity for ¢ < 2 x 10'® rad/s [44, 45]. For example, for
gold, appropriate values of the parameters are [46]

wpy = 9.03 eV, v = 0.0345 eV. (3.3)

In this case, the arguments given above for the exclusion of the TE zero mode apply.
The arguments are a bit subtle [38, 39], so we review and extend them here. Let
us write the Lifshitz formula at finite temperature in the form

Pr=3a= [am ) =3 s, (3.0

prll

where the second equality uses the Euler-Maclaurin sum formula, in terms of

f<m>:—ﬁ [k v (! ). (3.5)

according to (2.2) and (2.7), where we assume that vacuum separates the two plates
0 k3(Cm) = K(Gn) = VK% + (4. Here the denominators (2.4) are functions of (,,. By
changing the integration variable from m to (,, we immediately see that the integral
term in the Euler-Maclaurin sum formula corresponds precisely to the zero-temperature
result (2.2).
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One must, however, be careful in computing the low temperature corrections to
this. One cannot directly expand the denominator d in powers of ( because the k
integral in (3.5) ranges down to zero. Let us rewrite the TE term there as follows:

-1

2
o0 1 14+ 2 (e(iCn) — 1) /K?
f(TE)(m) — _i dk /{2 + \/ + Cm(g(lc ) )/’% e2na -1 ) (36)
70 Jamn/s 1= /14 (e(iGn) — 1) /K
Evidently, for the Drude model, or more generally, whenever
lim ¢*[=(i¢) — 1] = . (3.7)

fTE)(0) = 0. However, it is important to appreciate the physical discontinuity between
m = 0 and m = 1 for room temperature. At 300 K, while (; =0, (; = 27T = 0.16 eV,
large compared the relaxation frequency ~. Therefore, for m > 0,

2
o0 J1I+wi/r?2+1

TP (m) ~ L dk K? o/ e?re _ 1
0 S A1+ w2/k2—1

1 © 1
N —— dk K2——,
8 Je, e2ra 1

(3.8)

provided the significant values of (,,, and « are small compared the the plasma frequency
wp. This is just the ideal metal result contained in (2.8). Insofar as this is accurate,
this expression yields the low- and high-temperature corrections seen in (2.100), (2.10a).
However, there is now a discontinuity in the function f(™®). As ¢, — 0,

L[ K ¢(3)

(TE) —— [ d = — 3.9
rather than zero. This implies an additional linear term in the pressure at low
temperatures:

PT ~ pT=0 1 ¢(3) T al < 1. (3.10)

8ma’”’
Exclusion of the TE zero mode will also reduce the linear temperature dependence
expected at high temperatures,

PT ~ —gfrilT al > 1, (3.11)

one-half the usual ideal metal result seen in (2.10a), and this is indeed predicted in
numerical results [see figure 4 of [38] for @ > 5 pum, for example.|

Most experiments are carried out between a sphere (of radius R) and a plane. In
this circumstance, if R > a, a being the separation between the sphere and the plate
at the closest point, the force may be obtained from the proximity force approximation,

F =2nRF(a), (3.12)
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F(a) being the free energy for the case of parallel plates separated by a distance a. Thus
in the idealized description, the low temperature dependence including our linear term
is

™R
~ 360a°
Since this conversion is trivial, in the following we will restrict attention to the
straightforward parallel plate situation.

360

Fo - %g(g)aT + @@y 16Dy | T <1 (3.13)

These results are only approximate, because they assume the metal is ideal except
for the exclusion of the TE zero. Elsewhere, we have referred to this model as the
Modified Ideal Metal (MIM) model [38, 39]. Evidently, for sufficiently low temperatures
the approximation used here, that (; > =, breaks down, the function f(m) becomes
continuous, and the linear term disappears. Indeed, numerical calculations based on real
optical data for the permittivity show this transition. An example of such a calculation
is presented in section 6. There, in figure 1, we see a negative slope in the quantity
P/ P¢ as a function of the plate separation a in the region between 1 and 2 micrometers.
This slope is approximately —0.1/um. Here P is the pressure between the plates at 300
K, while P is the ideal Casimir pressure (2.5). If we compare this to our approximate
prediction (3.10),

PR 30 @ a 50 (3.14)
Pe 7.62 7 um pam
the slope and intercepts agree at the 20% level. Accurate numerical results between real
metal plates and sphere are given in [33].
Because this linear behavior does not persist at arbitrarily small temperatures, it
is clear that the conflict with the third law anticipated in the arguments in the previous
section do not apply. In fact, as we shall now see, the entropy does go to zero at zero

temperature.

4. Arguments in favor and against the TE zero mode

As noted above, there are strong thermodynamic and electrodynamic arguments in favor
of the exclusion of the TE zero mode. Essentially, the point is that a realistic physical
system can have only one state of lowest energy. Electrodynamically, one can start from
the Kramers-Kronig relation that relates the real and imaginary part of the permittivity,
required by causality, which can be written in the form of a dispersion relation for the
electric susceptibility [47]
wp [ )
X(w) = E/o dw Wit (4.1)

If the spectral function p(w’) > 0 is nonsingular at the origin, it is easily seen that

w?x(w) — 0 as w — 0, which as shown in the previous section implies the absence of
the TE zero mode. Conversely, p(w’) must have a §-function singularity at the origin
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to negate this conclusion. This would seem implausible for any but an overly idealized
model. In contrast, in the Drude model
2 9

S B =0 (4.2)

pw') =

It has been objected that rather then employing bulk permittivities as done in the
usual expression for the Lifshitz formula, one should use surface impedances instead
48, 49, 34, 30]. Indeed this may be done, but it leads to identical results. The surface
impedance merely expresses the linear relation between tangential components of the
electric and magnetic fields at the interface between the two media,

EJ_:Z(W,kJ_>BJ_Xn, nXEJ_:Z((U,kJ_>BJ_, (43)

where n is the normal to the interface at the point in question. From Maxwell’s equations
we deduce [47, 39] for the reflection coefficient for the TE modes

+ ZK
rTE = —72 — K= 4k, (4.4)

and the surface impedance is§
7 ¢ (4.5)

VEGC) — 1]+ 12
From this reflection coefficient the Lifshitz formula is constructed according to d =
(T’TE) “Pea . Evidently the resultant expression for the Lifshitz pressure coincides
with that found from the permittivity, seen for example in (3.6). This coincidence
has been well recognized by previous authors [51, 52]. The reason why Mostepanenko
and collaborators obtain a different result is that they omit the transverse momentum

dependence in (4.5) and thereby argue that at zero frequency Z vanishes,

~ VI (4.6)

e(i¢)
which is the content of the normal skin effect formula
w
A =—(1—-1)4/— 4.
(@) = ~(1 = i)y /o (4.7)

where o is the conductivity. [These two formulas are seen to be identical if we replace
w = i¢ and recognize that v = w?/(47wo).] These formulas apply when we have the
restriction appropriate to real photons k% < w?. However, no such mass-shell condition
applies to the virtual or evanescent photons involved in the thermal Casimir effect. The
same sort of error seems to be made by Torgerson and Lamoreaux [53, 54], and by
Bimonte [55, 56].

As noted above, use of the plasma model in the reflection coefficients would lead
to the conventional temperature dependence, but this dispersion relation is inconsistent
with real data. However, it has been argued that in the ideal Bloch-Griineisen model

§ Here we have assumed that the permittivity is independent of transverse momentum. In principle
this is incorrect, although optical data suggest that the transverse momentum dependence of ¢ is rather
small. See also [50].
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[57] the relaxation parameter goes to zero at zero temperature. However, real metals
exhibit scattering by impurities; in any case, at sufficiently low temperatures the residual
value of the relaxation parameter does not play a role, as the frequency characteristic
of the anomalous skin effect becomes dominant [58]. Moreover, the authors of [30, 34]
also extrapolate the plasma formula from the infrared region down to zero frequency,
whereas in fact frequencies very small compared to the frequency corresponding to the
separation distance play a dominant role in the temperature dependence [58]. Finally,
we emphasize that all present experiments are carried out at room temperature, where
the known room temperature data are relevant.

The principal reason for the theoretical controversy has to do with the purported
violation of the third law of thermodynamics if the TE zero mode is not included. If
ideal metal reflection coefficients are used otherwise (the MIM model) such a violation
indeed occurs, because the free energy per unit area for small temperature then behaves
like
¢(3)
16ma?

However, we and others have shown [59, 39, 58, 60] that for real metals, the free energy

F=Fy+T (4.8)

per area has a vanishing slope at the origin. Indeed, in the Drude model we have
2

w
F=F,+T>2(2ln2—-1 4.9

for sufficiently low temperatures. There is, however, an intermediate range of
temperatures where it is expected that the entropy is negative. We do not believe that
this presents a thermodynamic difficulty, and reflects the fact that the electrodynamic
fluctuations being considered represent only part of the complete physical system
[59, 38, 33], although this is not a universal opinion [58]. New calculations are underway,
showing explicitly the zero slope of the curve for the free energy near 7' = 0, thus
corresponding to zero entropy [61].

Two other recent papers also lend support to our point of view. Jancovici and
Samaj [62] and Buenzli and Martin [63] have examined the Casimir force between ideal-
conductor walls with emphasis on the high-temperature limit. Not surprisingly, ideal
inert boundary conditions are shown to be inadequate, and fluctuations within the walls,
modeled by the classical Debye-Hiickel theory, determine the high temperature behavior.
The linear in temperature behavior of the Casimir force is found to be reduced by a
factor of two from the behavior predicted by an ideal metal, just as in (3.11). This is
precisely the signal of the omission of the m = 0 TE mode. Thus, it is very hard to see
how the corresponding modification of the low-temperature behavior can be avoided.

Further support for our conclusions can be found in the recent paper of Sernelius
[64], who calculates the van der Waals-Casimir force between gold plates using the
Lindhard or random phase approximation dielectric function. Spatial dispersion plays a
crucial role in his calculations. For large separation, the force is one-half that of the ideal
metal, just as in the calculations in [62, 63]. For arbitrary separations between the plates,
Sernelius’ results numerically nearly exactly coincide with his earlier ones [65, 42] where
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dissipation (i.e., nonzero relaxation parameter) is included but no spatial dispersion. In
his new calculation, the inclusion of dissipation has negligible additional effect. His new
results thus essentially coincide with ours. There are actually physical reasons why we
should expect spatial dispersion not to be essential for the temperature correction to the
Casimir force. Namely, this nonlocal effect is connected with the anomalous skin effect,
which comes into play when the mean free path is much larger than the penetration
depth. The phenomenon occurs for metals at very low temperatures, or at very high
frequencies, and should not be of importance here. The condition for the argument is,
however, that the usual Fresnel boundary conditions remain valid.

5. Experimental constraints

We have marshaled theoretical arguments that seem to us quite overwhelming in favor
of the absence of the TE zero mode in the temperature dependence of the Casimir force
between real metal plates, which seem to imply unambiguously that there should be large
(~ 15%) thermal corrections to the Casimir force at separations of order 1 micrometer.
New detailed calculations based on this theory, and using real optical data for aluminum,
are discussed in the following section. The difficulty is that, experimentally, it is not
easy to perform Casimir force measurements at other than room temperature, so current
constraints on the theory all come from room temperature experiments. Then all one can
do is compare the theory at room temperature with the experimental results, which must
be corrected for a variety of effects, such as surface roughness, finite conductivity, and
patch potentials. A deviation between the corrected zero temperature theory and the
room temperature observations then is taken as a measure of the temperature correction.

The temperature correction is evidently relatively largest at the largest separations,
where, unfortunately, the total Casimir force is weakest. Lamoreaux’s early experiments
[9] were conducted at the 1 pm scale, so if they were accurate to 10% they would have
seen the effect our theory predicts, but probably, in spite of Lamoreaux’s assertion,
they were not so accurate, because few essential corrections were included [66]. The
experiments of Mohideen et al [13, 14, 15] were much more accurate, but because they
were conducted at much smaller distances, even our rather large temperature correction
would have remained inaccessible. It is the most recent experiments of the Purdue
group [29, 30| that claim the extraordinarily high precision to be able to see our effect
at distances as small as 100 nm. Indeed, they see no deviation from the corrected
zero-temperature Lifshitz theory using optical permittivities, and hence assert that our
theory is decisively ruled out. The effect we predict for the temperature correction is
only 1.5% at a distance of 160 nm [35], so the measurement must be performed at the
1% level to see the effect there. (For the usually employed sphere-plate configuration,
AF/F =~ 2.5% at a = 160 nm.) Although they claim this degree of accuracy, it is
doubtful that they have achieved it, because, for example, to achieve 1% accuracy, the
separation would have to be determined to better than 0.3%, or 0.5 nm at a = 160 nm.
Since the roughness in the surfaces involved is much larger than this (see also [67]), and
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Casimir force between two Al half-spaces
relative to ideal result

PP
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- - T=100K
— T=300K
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Separation a/nm

Figure 1. Temperature dependence of the Casimir force between aluminum plates.

other corrections (such as the fact that the metallic surfaces are actually thin films, and
the effects of surface plasmon [68, 69]) have not been included, we have reason to be
skeptical of such claims [70].

In any case, it would seem imperative to perform experiments at different
temperatures in order to provide evidence for or against temperature dependence of
Casimir forces. We understand such experiments are in progress. We encourage
experimentalists to redouble their efforts to determine the presence or absence of such
an effect in an unbiased manner, for the issues involved touch at the heart of our
fundamental theoretical understanding of electrodynamics, statistical mechanics, and
quantum field theory.

6. New calculations

To aid in the experimental disentanglement of this effect, we have carried out new
calculations of the Casimir force between two infinite half-spaces made of aluminum,
separated by a vacuum space of width a. (Other recent calculations appear in
[35, 71, 46].) The results are shown in figure 1. (Figures 1-9 are taken from the
Master’s Thesis of SAE [72].) Formulas made use of are read off from (2.2) and are now
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given in usual dimensional units:

A €—2noa A 6—2/4011
P ___ TE ™ 1
) =5 [ [Tankiw (SIS ERE T (o
kBT A2 e 2R0a A2, e 2r0a
P dk k 6.1b
r>o(a Z / 1R1Ko <1 AL e P + 1 AZ_¢ 2 ) (6.10)
where a is the separation between plates (of infinite thickness), and
R — Ko
Arg = 2
Tkt ko (6:2a)
k — (i) ko
Ary = 6.20
™My (i) ko (6:20)
(2
k=1/k?+ E(ZC);, (6.2¢)
), ¢
Rog = k‘J_‘l—g (62d)

Here, £(i¢) = €(i¢)/€o is the usual permittivity relative to the vacuum. In the case
of finite temperatures, ( = (,, = 2mrmkgT/h, and a standard Lifshitz substitution of
integration variables was made during calculations (see for example (3.2b) of [38]). The
results are plotted relative to the standard Casimir pressure Pr in (2.5). Calculations
have been carried to a relative accuracy of better than 107*. Even at T = 0 there are
large deviations from the ideal Casimir result at all distance scales.

To illustrate the contributions of the TE and TM modes, figures 2—4 depict the TE
and TM integrands of a Casimir pressure expression of the type

Pr_y = /OO d¢ /OO dk) [Ite(i¢, k1) + Irm(i¢, k1)) (6.3)
0 0

It is clear that the TE term in the integrand falls off rapidly to zero as ( — 0 whereas
the TM term remains finite. The relative contributions to the pressure by the TE and
TM modes are illustrated in figures 5-6. Evidently, the contribution of the TE mode
rapidly decreases with increasing temperature and increasing plate separation.

6.1. Results for a five-layer model

Because many experiments have been carried out with a conducting surface between
parallel capacitor plates it is useful to consider the five layer geometry which has been
treated repeatedly by Tomas in recent years [73]. The geometry is defined by figure 7.
All three slabs are assumed to be made of aluminum. We assume one intermediate plate
of width b, immersed in a cavity of total width ¢ = a +a’ +b. Between the central plate
and the two outer semi-infinite media we assume a vacuum (¢, = 1). The quantity h is
defined as h = ¢ —b. The quantity ¢ is the deviation of the center of the plate from the
midline of the cavity. The Casimir pressure at zero and finite temperature is given by

PT 0(5 b C) 2/ dC/ dk’J_q —~ IC k’J_,(S b C) (64&)
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TE-polarised part of integrand
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Figure 2. TE part of the integrand in (6.3).
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Whole integrand (both polarisations)
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Figure 4. Total integrand in (6.3).

Contribution from TE and TM modes
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Figure 5. TE and TM contributions to the pressure shown in figure 1.
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Contribution from TE and TM modes
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Figure 6. Ratio of the TE and TM mode pressures contributing to the pressure shown

in figure 1.
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Figure 7. The 5-zone geometry. Here we have set e, = 1.
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Force on centre slab in 5-zone system
T T
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Figure 8. Pressure on the plate at a distance § from the cavity center. If § < 0 one
gets the antisymmetric prolongation about the position 6 = 0.

Proo(8:b,¢) kBTZ Z 1,(iCm, k150, b, ¢). (6.4b)

m=0 q=TE
Here the integrand is
I,iC, k150, ¢) = k1ko2A1,00,(1 — e~ 2Ry ool ginh 2r00
X [—que_%zb +1-— que_%oh(e_%zb — qu) — 21, A9y (1 — e72F20)e™"0h cogh 2/@05} - ,
(6.5)
The Casimir force is positive for positive §, and is antisymmetric around the cavity
center 6 = 0. The index ¢ in the A’s in the formulas runs over the polarizations TE and
TM, which are given by equations (6.2a), (6.2b).
Numerically, we choose ¢ = 3 um and b = 500 nm. The pressure P(9), calculated
from 6 = 0 to § = (¢ — b)/2 — 50 nm, is shown in figure 8. All calculations are done

with an accuracy of better that 107* in the final result, which should be sufficient for
practical purposes. Figure 9 shows the pressure relative to Casimir’s result for ideal

w2he 1 1
e =5 (Gasam ~ o) o

As for the finite temperature calculations, it has been checked that all terms in the

conductors,

sum (except for the zero mode) lie within the frequency domain covered by Lambrecht’s
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Force on centre slab in 5-zone system
relative to ideal result
T

C

P(&;b,c)/P

Slab: Aluminium
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Cavity width: 3 pm
Slab width: 500nm

0.4
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— — Temperature 100K
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Distance o from centre line/nm

Figure 9. Pressure on the plate at a distance § from the cavity center relative
to Casimir’s result (6.6) for ideal conductors. For § < 0 one gets the symmetric
prolongation of the curve about the position § = 0.

data. There is thus no extra assumption made in the calculation, such as the property
eC?/c*> — 0 as ¢ — 0, following from the Drude relation, except to ensure that there
is no contribution from the TE zero mode. In the T" = 0 case, the Drude relation is
used for low frequencies. We believe that the contribution to the force coming from
frequencies outside the Lambrecht region is very small. Again, we see large deviations
from the ideal Casimir result at all temperatures, as well as relatively large temperature
corrections, which we hope will be readily detectable in future experiments.
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