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Abstract. The Casimir effect, reflecting quantum vacuum fluctuations in the

electromagnetic field in a region with material boundaries, has been studied both

theoretically and experimentally since 1948. The forces between dielectric and metallic

surfaces both plane and curved have been measured at the 10 to 1 percent level

in a variety of room-temperature experiments, and remarkable agreement with the

zero-temperature theory has been achieved. In fitting the data various corrections

due to surface roughness, patch potentials, curvature, and temperature have been

incorporated. It is the latter that is the subject of the present article. We point

out that, in fact, no temperature dependence has yet been detected, and that the

experimental situation is still too fluid to permit conclusions about thermal corrections

to the Casimir effect. Theoretically, there are subtle issues concerning thermodynamics

and electrodynamics which have resulted in disparate predictions concerning the nature

of these corrections. However, a general consensus has seemed to emerge that suggests

that the temperature correction to the Casimir effect is relatively large, and should be

observable in future experiments involving surfaces separated at the few micrometer

scale.
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1. Introduction

About the same time that Schwinger and Feynman were inventing renormalized quan-

tum electrodynamics, Casimir discovered that quantum electrodynamic fluctuations re-

sulted in macroscopic forces between conductors and dielectrics [1]. The theory was a

natural outgrowth of the Casimir-Polder theory of the retarded dispersion force between

molecules [2]. The general theory for the forces between parallel dielectrics was worked

out by Lifshitz and collaborators [3], who also included temperature corrections, which

were considered further by Sauer [4] and Mehra [5]. Some years later, the whole theory

was rederived by Schwinger, DeRaad, and Milton [6].

The early experiments on Casimir forces were rather inconclusive – for a review

see [7]. However, the corresponding Lifshitz theory was verified rather impressively

by Sabisky and Anderson [8], so there could hardly be any doubt of the validity of

the essential ideas. Starting about a decade ago, modern experiments by Lamoreaux

[9, 10, 11, 12], Mohideen and collaborators [13, 14, 15], and by Erdeth [16] brought

the experimental measurement of the Casimir force between curved metal surfaces

(mapped to the plane geometry by the proximity approximation [17, 18]) into the percent

accuracy region. (Exact results have now apparently rendered the use of the proximity

approximation, which cannot be extended beyond leading order, unnecessary. See, for

example, [19, 20, 21].) Application of such Casimir forces to nanoelectromechanical

devices have been suggested by experiments at Bell Labs and Harvard [22, 23, 24]. Only

one experiment so far, of limited accuracy (∼ 15%), has employed parallel plates [25].

The difficulty of maintaining parallelism in that geometry limits the accuracy of the

experiment, but the forces are much larger than those between a sphere and a plate,

so the forces can, in principle, be determined at much larger separations. Proposals to

perform measurements of the force between a cylinder and a plane [26] and between

eccentric cylinders [27] have advantages because the forces are stronger than between

a sphere and a plane, yet the difficulties in assuring parallelism are not so severe as

with two plane surfaces. The most precise experiments so far, based on both static and

dynamical procedures between a plate and a spherical surface, have been performed at

Purdue [28, 29, 30], where the accuracy is claimed to be better than 1% at separations

down to less than 100 nm.

All present experiments agree well with the zero-temperature Casimir theory when

surface roughness and finite conductivity corrections are included [31, 32]. The issue

about which controversy has recently erupted is the temperature dependence. (For

recent statements of both sides of the controversy, see [30, 33, 34, 35, 36].) All

experiments reported to date have been conducted at room temperature, so there is

no direct evidence for or against any particular model of the temperature dependence.

Indirect evidence for this dependence has been inferred based on the nonzero shift in

the theoretical Casimir force between the surfaces due to the difference between the

force at zero temperature and at 300 K. Surprisingly, this temperature shift is not so

straightforwardly computed as one would have at first suspected.
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It is the purpose of the present paper to frame the question of the temperature

dependence of the Casimir force in the context of the history of the subject and

the present experimental constraints, as well as to point out ways of reconciling the

ambiguities both from the theoretical and experimental sides. In the following section

we review the standard approach given in [6] for both dielectric and metal surfaces.

Then, in section 3 we give the arguments why the transverse electric (TE) zero mode

should not be included, and how this impacts the temperature dependence of the force,

and the resulting impact on the free energy and entropy. Other theoretical arguments for

and against this point of view are discussed in section 4. The status of the experimental

situation, and the possibility of dedicated experiments to search for the temperature

dependence of the Casimir effect, will be reviewed in section 5. Finally, some new

calculations are presented in section 6 in the hope of providing signatures to help resolve

the controversy.

2. Conventional temperature approach

The zero-temperature Casimir effect between parallel conducting plates, or between

parallel dielectrics, is very well understood, and is not controversial. The formula for

the latter, which includes the former as a singular limit, may be derived by a multitude

of formalisms, which will not be reviewed here [6, 31, 37, 38, 39]. For a system of parallel

dielectric media, characterized by a permittivity

ε(z) =











ε1, z < 0,

ε3, 0 < z < a,

ε2, a < z,

(2.1)

where the various permittivities are functions of frequency, the Lifshitz force per unit

area on one of the surfaces is at zero temperature

P T=0 = − 1

4π2

∫

∞

0

dζ

∫

∞

0

dk2
⊥
κ3(d

−1 + d′−1), (2.2)

where ζ is the imaginary frequency, ζ = −iω, and the longitudinal wavenumber is

κi =
√

k2
⊥

+ ζ2εi(iζ), (2.3)

while the transverse electric (TE) and transverse magnetic (TM) Green’s functions are

characterized by the denominators

d =
κ3 + κ1

κ3 − κ1

κ3 + κ2

κ3 − κ2
e2κ3a − 1, d′ =

κ′

3 + κ′

1

κ′
3 − κ′

1

κ′

3 + κ′

2

κ′
3 − κ′

2

e2κ3a − 1, (2.4)

respectively, where κ′

i = κi/εi.

The attractive Casimir pressure between parallel perfectly conducting planes

separated by a vacuum space of thickness a is obtained by setting ε1,2 → ∞ and ǫ3 = 1.

In that case the TE and TM contributions are equal, and we have

PC = − 1

8π2

∫

∞

0

dζ

∫

∞

ζ2

dκ2 4κ

e2κa − 1
= − 1

π2

∫

∞

0

dζ
ζ3

e2ζa − 1
= − π2

~c

240a4
, (2.5)
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which is Casimir’s celebrated result [1].

The controversy surrounds the question of how to incorporate thermal corrections

into the latter result. At first glance, the procedure to do this seems straightforward. It

is well-known that thermal Green’s functions must be periodic in imaginary time, with

period β = 1/T [40]. This implies a Fourier series decomposition, rather than a Fourier

transform, where in place of the imaginary frequency integral in (2.5) we have a sum

over Matsubara frequencies

ζ2
m =

4π2m2

β2
, (2.6)

that is, the replacement
∫

∞

0

dζ

2π
→ 1

β

∞
∑

m=0

′, (2.7)

the prime being an instruction to count the m = 0 term in the sum with half weight.

This prescription leads to the following formula for the Casimir pressure between perfect

conductors at temperature T ,

P T = − 1

4πβa3

∞
∑

m=0

′

∫

∞

nt

y2 dy
1

ey − 1
, (2.8)

where

t =
4πa

β
. (2.9)

From this it is straightforward to find the high and low temperature limits,

P T ∼ − 1

4πβa3
ζ(3) − 1

2πβa3

(

1 + t +
t2

2

)

e−t, β ≪ 4πa, (2.10a)

P T ∼ − π2

240a4

[

1 +
16

3

a4

β4
− 240

π

a

β
e−πβ/a

]

, β ≫ 4πa. (2.10b)

These are the results found by Sauer [4] and Mehra [5], and by Lifshitz [3]. The two

limits are connected by the duality symmetry found by Brown and Maclay [41]. The

pressure may be obtained by differentiating the free energy,

P = − ∂

∂a
F, (2.11)

which takes the following form for low temperature (now omiting the exponentially small

terms)

F ∼ − π2

720a3
− ζ(3)

2π
T 3 +

π2

45
T 4a, aT ≪ 1, (2.12)

from which the entropy follows,

S ∼ − ∂

∂T
F ∼ 3ζ(3)

2π
T 2 − 4π2

45
T 3a, aT ≪ 1, (2.13)

which vanishes as T goes to zero, in accordance with the third law of thermodynamics,

the Nernst heat theorem.
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3. Exclusion of TE zero mode

However, there is something peculiar about the procedure adopted above for a perfect

metal. (This seems first to have been appreciated by Boström and Sernelius [42].) It has

to do with the transverse electric mode of zero frequency, which we shall refer to as the

TE zero mode. If we examine the zero frequency behavior of the reflection coefficients

for a dielectric appearing in (2.4), we see that providing ζ2ε(iζ) → 0 as ζ → 0, the

longitudinal wavenumber κi → k as ζ → 0, and hence d → ∞ as ζ → 0. This means

that there is no TE zero mode for a dielectric. This statement does not appear to be

controversial [43]. However, if a metal is modeled as the ε → ∞ limit of a dielectric,

the same conclusion would apply. Because that would spoil the concordance with the

third law noted in the previous section, the prescription was promulgated in [6] that

the ε → ∞ limit be taken before the ζ → 0 limit. But, of course, a real metal is not

described by such a mathematical limit, so we must examine the physics carefully.

A simple model for the dielectric function is the plasma dispersion relation,

ε(ω) = 1 −
ω2

p

ω2
, (3.1)

where ωp is the plasma frequency. For this dispersion relation, the condition ζ2ε(iζ) → 0

fails to hold as ζ → 0, and the idealized prescription result, namely the contribution of

the TE zero mode, holds. However, real metals are not well described by this dispersion

relation. Rather, the Drude model,

ε(iζ) = 1 +
ω2

p

ζ(ζ + γ)
, (3.2)

where the relaxation frequency γ represents dispersion, very accurately fits optical

experimental data for the permittivity for ζ < 2 × 1015 rad/s [44, 45]. For example, for

gold, appropriate values of the parameters are [46]

ωp = 9.03 eV, γ = 0.0345 eV. (3.3)

In this case, the arguments given above for the exclusion of the TE zero mode apply.

The arguments are a bit subtle [38, 39], so we review and extend them here. Let

us write the Lifshitz formula at finite temperature in the form

P T =
∞

∑

m=0

′fm =

∫

∞

0

dm f(m) −
∞

∑

k=0

B2k

(2k)!
f (2k−1)(0), (3.4)

where the second equality uses the Euler-Maclaurin sum formula, in terms of

f(m) = − 1

2πβ

∫

∞

0

dk2
⊥

κ(ζm)
(

d−1
m + d′−1

m

)

, (3.5)

according to (2.2) and (2.7), where we assume that vacuum separates the two plates

so κ3(ζm) = κ(ζm) =
√

k2
⊥

+ ζ2
m. Here the denominators (2.4) are functions of ζm. By

changing the integration variable from m to ζm we immediately see that the integral

term in the Euler-Maclaurin sum formula corresponds precisely to the zero-temperature

result (2.2).
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One must, however, be careful in computing the low temperature corrections to

this. One cannot directly expand the denominator d in powers of ζ because the k⊥

integral in (3.5) ranges down to zero. Let us rewrite the TE term there as follows:

f (TE)(m) = − 1

πβ

∫

∞

2mπ/β

dκ κ2







[

1 +
√

1 + ζ2
m(ε(iζm) − 1)/κ2

1 −
√

1 + ζ2
m(ε(iζm) − 1)/κ2

]2

e2κa − 1







−1

. (3.6)

Evidently, for the Drude model, or more generally, whenever

lim
ζ→0

ζ2[ε(iζ) − 1] = 0, (3.7)

f (TE)(0) = 0. However, it is important to appreciate the physical discontinuity between

m = 0 and m = 1 for room temperature. At 300 K, while ζ0 = 0, ζ1 = 2πT = 0.16 eV,

large compared the relaxation frequency γ. Therefore, for m > 0,

f (TE)(m) ≈ − 1

πβ

∫

∞

ζm

dκ κ2











√

1 + ω2
p/κ

2 + 1
√

1 + ω2
p/κ

2 − 1





2

e2κa − 1







−1

≈ − 1

πβ

∫

∞

ζm

dκ κ2 1

e2κa − 1
, (3.8)

provided the significant values of ζm and κ are small compared the the plasma frequency

ωp. This is just the ideal metal result contained in (2.8). Insofar as this is accurate,

this expression yields the low- and high-temperature corrections seen in (2.10b), (2.10a).

However, there is now a discontinuity in the function f (TE). As ζm → 0,

f (TE)(m) → − 1

πβ

∫

∞

0

dκ
κ2

e2κa − 1
= − ζ(3)

4πβa3
, (3.9)

rather than zero. This implies an additional linear term in the pressure at low

temperatures:

P T ∼ P T=0 +
ζ(3)

8πa3
T, aT ≪ 1. (3.10)

Exclusion of the TE zero mode will also reduce the linear temperature dependence

expected at high temperatures,

P T ∼ − ζ(3)

8πa3
T, aT ≫ 1, (3.11)

one-half the usual ideal metal result seen in (2.10a), and this is indeed predicted in

numerical results [see figure 4 of [38] for a > 5 µm, for example.]

Most experiments are carried out between a sphere (of radius R) and a plane. In

this circumstance, if R ≫ a, a being the separation between the sphere and the plate

at the closest point, the force may be obtained from the proximity force approximation,

F = 2πRF (a), (3.12)
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F (a) being the free energy for the case of parallel plates separated by a distance a. Thus

in the idealized description, the low temperature dependence including our linear term

is

F ∼ − π3R

360a3

[

1 − 45

π3
ζ(3)aT +

360

π3
ζ(3)(aT )3 − 16(aT )4

]

, aT ≪ 1 (3.13)

Since this conversion is trivial, in the following we will restrict attention to the

straightforward parallel plate situation.

These results are only approximate, because they assume the metal is ideal except

for the exclusion of the TE zero. Elsewhere, we have referred to this model as the

Modified Ideal Metal (MIM) model [38, 39]. Evidently, for sufficiently low temperatures

the approximation used here, that ζ1 ≫ γ, breaks down, the function f(m) becomes

continuous, and the linear term disappears. Indeed, numerical calculations based on real

optical data for the permittivity show this transition. An example of such a calculation

is presented in section 6. There, in figure 1, we see a negative slope in the quantity

P/PC as a function of the plate separation a in the region between 1 and 2 micrometers.

This slope is approximately −0.1/µm. Here P is the pressure between the plates at 300

K, while PC is the ideal Casimir pressure (2.5). If we compare this to our approximate

prediction (3.10),

P T=300K

PC
≈ 1 − 30

7.62

ζ(3)

π3

a

µm
= 1 − 0.15

a

µm
, (3.14)

the slope and intercepts agree at the 20% level. Accurate numerical results between real

metal plates and sphere are given in [33].

Because this linear behavior does not persist at arbitrarily small temperatures, it

is clear that the conflict with the third law anticipated in the arguments in the previous

section do not apply. In fact, as we shall now see, the entropy does go to zero at zero

temperature.

4. Arguments in favor and against the TE zero mode

As noted above, there are strong thermodynamic and electrodynamic arguments in favor

of the exclusion of the TE zero mode. Essentially, the point is that a realistic physical

system can have only one state of lowest energy. Electrodynamically, one can start from

the Kramers-Kronig relation that relates the real and imaginary part of the permittivity,

required by causality, which can be written in the form of a dispersion relation for the

electric susceptibility [47]

χ(ω) =
ω2

p

4π

∫

∞

0

dω′
p(ω′)

ω′2 − (ω + iǫ)2
. (4.1)

If the spectral function p(ω′) ≥ 0 is nonsingular at the origin, it is easily seen that

ω2χ(ω) → 0 as ω → 0, which as shown in the previous section implies the absence of

the TE zero mode. Conversely, p(ω′) must have a δ-function singularity at the origin
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to negate this conclusion. This would seem implausible for any but an overly idealized

model. In contrast, in the Drude model

p(ω′) =
2

π

γ

ω′2 + γ2
→ 2δ(ω′) γ → 0. (4.2)

It has been objected that rather then employing bulk permittivities as done in the

usual expression for the Lifshitz formula, one should use surface impedances instead

[48, 49, 34, 30]. Indeed this may be done, but it leads to identical results. The surface

impedance merely expresses the linear relation between tangential components of the

electric and magnetic fields at the interface between the two media,

E⊥ = Z(ω,k⊥)B⊥ × n, n× E⊥ = Z(ω,k⊥)B⊥, (4.3)

where n is the normal to the interface at the point in question. From Maxwell’s equations

we deduce [47, 39] for the reflection coefficient for the TE modes

rTE = −ζ + Zκ

ζ − Zκ
, κ2 = ζ2 + k2

⊥
, (4.4)

and the surface impedance is§

Z = − ζ
√

ζ2[ε(iζ) − 1] + κ2
. (4.5)

From this reflection coefficient the Lifshitz formula is constructed according to d =
(

rTE
)−2

e2κa − 1. Evidently the resultant expression for the Lifshitz pressure coincides

with that found from the permittivity, seen for example in (3.6). This coincidence

has been well recognized by previous authors [51, 52]. The reason why Mostepanenko

and collaborators obtain a different result is that they omit the transverse momentum

dependence in (4.5) and thereby argue that at zero frequency Z vanishes,

Z → − 1
√

ε(iζ)
∼

√
γ

ωp

√

ζ, (4.6)

which is the content of the normal skin effect formula

Z(ω) = −(1 − i)

√

ω

8πσ
(4.7)

where σ is the conductivity. [These two formulas are seen to be identical if we replace

ω = iζ and recognize that γ = ω2
p/(4πσ).] These formulas apply when we have the

restriction appropriate to real photons k2
⊥
≤ ω2. However, no such mass-shell condition

applies to the virtual or evanescent photons involved in the thermal Casimir effect. The

same sort of error seems to be made by Torgerson and Lamoreaux [53, 54], and by

Bimonte [55, 56].

As noted above, use of the plasma model in the reflection coefficients would lead

to the conventional temperature dependence, but this dispersion relation is inconsistent

with real data. However, it has been argued that in the ideal Bloch-Grüneisen model

§ Here we have assumed that the permittivity is independent of transverse momentum. In principle

this is incorrect, although optical data suggest that the transverse momentum dependence of ε is rather

small. See also [50].
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[57] the relaxation parameter goes to zero at zero temperature. However, real metals

exhibit scattering by impurities; in any case, at sufficiently low temperatures the residual

value of the relaxation parameter does not play a role, as the frequency characteristic

of the anomalous skin effect becomes dominant [58]. Moreover, the authors of [30, 34]

also extrapolate the plasma formula from the infrared region down to zero frequency,

whereas in fact frequencies very small compared to the frequency corresponding to the

separation distance play a dominant role in the temperature dependence [58]. Finally,

we emphasize that all present experiments are carried out at room temperature, where

the known room temperature data are relevant.

The principal reason for the theoretical controversy has to do with the purported

violation of the third law of thermodynamics if the TE zero mode is not included. If

ideal metal reflection coefficients are used otherwise (the MIM model) such a violation

indeed occurs, because the free energy per unit area for small temperature then behaves

like

F = F0 + T
ζ(3)

16πa2
. (4.8)

However, we and others have shown [59, 39, 58, 60] that for real metals, the free energy

per area has a vanishing slope at the origin. Indeed, in the Drude model we have

F = F0 + T 2
ω2

p

48γ
(2 ln 2 − 1), (4.9)

for sufficiently low temperatures. There is, however, an intermediate range of

temperatures where it is expected that the entropy is negative. We do not believe that

this presents a thermodynamic difficulty, and reflects the fact that the electrodynamic

fluctuations being considered represent only part of the complete physical system

[59, 38, 33], although this is not a universal opinion [58]. New calculations are underway,

showing explicitly the zero slope of the curve for the free energy near T = 0, thus

corresponding to zero entropy [61].

Two other recent papers also lend support to our point of view. Jancovici and

Šamaj [62] and Buenzli and Martin [63] have examined the Casimir force between ideal-

conductor walls with emphasis on the high-temperature limit. Not surprisingly, ideal

inert boundary conditions are shown to be inadequate, and fluctuations within the walls,

modeled by the classical Debye-Hückel theory, determine the high temperature behavior.

The linear in temperature behavior of the Casimir force is found to be reduced by a

factor of two from the behavior predicted by an ideal metal, just as in (3.11). This is

precisely the signal of the omission of the m = 0 TE mode. Thus, it is very hard to see

how the corresponding modification of the low-temperature behavior can be avoided.

Further support for our conclusions can be found in the recent paper of Sernelius

[64], who calculates the van der Waals-Casimir force between gold plates using the

Lindhard or random phase approximation dielectric function. Spatial dispersion plays a

crucial role in his calculations. For large separation, the force is one-half that of the ideal

metal, just as in the calculations in [62, 63]. For arbitrary separations between the plates,

Sernelius’ results numerically nearly exactly coincide with his earlier ones [65, 42] where
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dissipation (i.e., nonzero relaxation parameter) is included but no spatial dispersion. In

his new calculation, the inclusion of dissipation has negligible additional effect. His new

results thus essentially coincide with ours. There are actually physical reasons why we

should expect spatial dispersion not to be essential for the temperature correction to the

Casimir force. Namely, this nonlocal effect is connected with the anomalous skin effect,

which comes into play when the mean free path is much larger than the penetration

depth. The phenomenon occurs for metals at very low temperatures, or at very high

frequencies, and should not be of importance here. The condition for the argument is,

however, that the usual Fresnel boundary conditions remain valid.

5. Experimental constraints

We have marshaled theoretical arguments that seem to us quite overwhelming in favor

of the absence of the TE zero mode in the temperature dependence of the Casimir force

between real metal plates, which seem to imply unambiguously that there should be large

(∼ 15%) thermal corrections to the Casimir force at separations of order 1 micrometer.

New detailed calculations based on this theory, and using real optical data for aluminum,

are discussed in the following section. The difficulty is that, experimentally, it is not

easy to perform Casimir force measurements at other than room temperature, so current

constraints on the theory all come from room temperature experiments. Then all one can

do is compare the theory at room temperature with the experimental results, which must

be corrected for a variety of effects, such as surface roughness, finite conductivity, and

patch potentials. A deviation between the corrected zero temperature theory and the

room temperature observations then is taken as a measure of the temperature correction.

The temperature correction is evidently relatively largest at the largest separations,

where, unfortunately, the total Casimir force is weakest. Lamoreaux’s early experiments

[9] were conducted at the 1 µm scale, so if they were accurate to 10% they would have

seen the effect our theory predicts, but probably, in spite of Lamoreaux’s assertion,

they were not so accurate, because few essential corrections were included [66]. The

experiments of Mohideen et al [13, 14, 15] were much more accurate, but because they

were conducted at much smaller distances, even our rather large temperature correction

would have remained inaccessible. It is the most recent experiments of the Purdue

group [29, 30] that claim the extraordinarily high precision to be able to see our effect

at distances as small as 100 nm. Indeed, they see no deviation from the corrected

zero-temperature Lifshitz theory using optical permittivities, and hence assert that our

theory is decisively ruled out. The effect we predict for the temperature correction is

only 1.5% at a distance of 160 nm [35], so the measurement must be performed at the

1% level to see the effect there. (For the usually employed sphere-plate configuration,

∆F/F ≈ 2.5% at a = 160 nm.) Although they claim this degree of accuracy, it is

doubtful that they have achieved it, because, for example, to achieve 1% accuracy, the

separation would have to be determined to better than 0.3%, or 0.5 nm at a = 160 nm.

Since the roughness in the surfaces involved is much larger than this (see also [67]), and
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Figure 1. Temperature dependence of the Casimir force between aluminum plates.

other corrections (such as the fact that the metallic surfaces are actually thin films, and

the effects of surface plasmon [68, 69]) have not been included, we have reason to be

skeptical of such claims [70].

In any case, it would seem imperative to perform experiments at different

temperatures in order to provide evidence for or against temperature dependence of

Casimir forces. We understand such experiments are in progress. We encourage

experimentalists to redouble their efforts to determine the presence or absence of such

an effect in an unbiased manner, for the issues involved touch at the heart of our

fundamental theoretical understanding of electrodynamics, statistical mechanics, and

quantum field theory.

6. New calculations

To aid in the experimental disentanglement of this effect, we have carried out new

calculations of the Casimir force between two infinite half-spaces made of aluminum,

separated by a vacuum space of width a. (Other recent calculations appear in

[35, 71, 46].) The results are shown in figure 1. (Figures 1–9 are taken from the

Master’s Thesis of SAE [72].) Formulas made use of are read off from (2.2) and are now
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given in usual dimensional units:

PT=0(a) = − ~

2π2

∫

∞

0

dζ

∫

∞

0

dk⊥k⊥κ0

(

∆2
TEe−2κ0a

1 − ∆2
TEe−2κ0a

+
∆2

TMe−2κ0a

1 − ∆2
TMe−2κ0a

)

, (6.1a)

PT>0(a) = −kBT

π

∞
∑

m=0

′

∫

∞

0

dk⊥k⊥κ0

(

∆2
TEe−2κ0a

1 − ∆2
TEe−2κ0a

+
∆2

TMe−2κ0a

1 − ∆2
TMe−2κ0a

)

, (6.1b)

where a is the separation between plates (of infinite thickness), and

∆TE =
κ − κ0

κ + κ0
, (6.2a)

∆TM =
κ − ε(iζ)κ0

κ + ε(iζ)κ0

, (6.2b)

κ =

√

k2
⊥

+ ε(iζ)
ζ2

c2
, (6.2c)

κ0 =

√

k2
⊥

+
ζ2

c2
. (6.2d)

Here, ε(iζ) = ǫ(iζ)/ǫ0 is the usual permittivity relative to the vacuum. In the case

of finite temperatures, ζ = ζm = 2πmkBT/~, and a standard Lifshitz substitution of

integration variables was made during calculations (see for example (3.2b) of [38]). The

results are plotted relative to the standard Casimir pressure PC in (2.5). Calculations

have been carried to a relative accuracy of better than 10−4. Even at T = 0 there are

large deviations from the ideal Casimir result at all distance scales.

To illustrate the contributions of the TE and TM modes, figures 2–4 depict the TE

and TM integrands of a Casimir pressure expression of the type

PT=0 =

∫

∞

0

dζ

∫

∞

0

dk⊥[ITE(iζ, k⊥) + ITM(iζ, k⊥)]. (6.3)

It is clear that the TE term in the integrand falls off rapidly to zero as ζ → 0 whereas

the TM term remains finite. The relative contributions to the pressure by the TE and

TM modes are illustrated in figures 5–6. Evidently, the contribution of the TE mode

rapidly decreases with increasing temperature and increasing plate separation.

6.1. Results for a five-layer model

Because many experiments have been carried out with a conducting surface between

parallel capacitor plates it is useful to consider the five layer geometry which has been

treated repeatedly by Tomaš in recent years [73]. The geometry is defined by figure 7.

All three slabs are assumed to be made of aluminum. We assume one intermediate plate

of width b, immersed in a cavity of total width c = a+ a′ + b. Between the central plate

and the two outer semi-infinite media we assume a vacuum (εg = 1). The quantity h is

defined as h = c− b. The quantity δ is the deviation of the center of the plate from the

midline of the cavity. The Casimir pressure at zero and finite temperature is given by

PT=0(δ; b, c) =
~

2π2

∫

∞

0

dζ

∫

∞

0

dk⊥

TM
∑

q=TE

Iq(iζ, k⊥; δ, b, c) (6.4a)
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Figure 2. TE part of the integrand in (6.3).
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Figure 3. TM part of the integrand in (6.3).
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Figure 4. Total integrand in (6.3).
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Figure 5. TE and TM contributions to the pressure shown in figure 1.
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Figure 7. The 5-zone geometry. Here we have set εg = 1.
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Figure 8. Pressure on the plate at a distance δ from the cavity center. If δ < 0 one

gets the antisymmetric prolongation about the position δ = 0.

PT>0(δ; b, c) =
kBT

π

∞
∑

m=0

′

TM
∑

q=TE

Iq(iζm, k⊥; δ, b, c). (6.4b)

Here the integrand is

Iq(iζ, k⊥; δ, b, c) = k⊥κ02∆1q∆2q(1 − e−2κ2b)e−κ0h sinh 2κ0δ

×
[

−∆2
2qe

−2κ2b + 1 − ∆2
1qe

−2κ0h(e−2κ2b − ∆2
2q) − 2∆1q∆2q(1 − e−2κ2b)e−κ0h cosh 2κ0δ

]−1
,

(6.5)

The Casimir force is positive for positive δ, and is antisymmetric around the cavity

center δ = 0. The index q in the ∆’s in the formulas runs over the polarizations TE and

TM, which are given by equations (6.2a), (6.2b).

Numerically, we choose c = 3 µm and b = 500 nm. The pressure P (δ), calculated

from δ = 0 to δ = (c − b)/2 − 50 nm, is shown in figure 8. All calculations are done

with an accuracy of better that 10−4 in the final result, which should be sufficient for

practical purposes. Figure 9 shows the pressure relative to Casimir’s result for ideal

conductors,

PC = −π2
~c

240

(

1

(h/2 + δ)4
− 1

(h/2 − δ)4

)

. (6.6)

As for the finite temperature calculations, it has been checked that all terms in the

sum (except for the zero mode) lie within the frequency domain covered by Lambrecht’s
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Figure 9. Pressure on the plate at a distance δ from the cavity center relative

to Casimir’s result (6.6) for ideal conductors. For δ < 0 one gets the symmetric

prolongation of the curve about the position δ = 0.

data. There is thus no extra assumption made in the calculation, such as the property

εζ2/c2 → 0 as ζ → 0, following from the Drude relation, except to ensure that there

is no contribution from the TE zero mode. In the T = 0 case, the Drude relation is

used for low frequencies. We believe that the contribution to the force coming from

frequencies outside the Lambrecht region is very small. Again, we see large deviations

from the ideal Casimir result at all temperatures, as well as relatively large temperature

corrections, which we hope will be readily detectable in future experiments.
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