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The Tevatron has inspired new interest in the subject of magnetic monopoles. First
there was the 1998 D0 limit on the virtual production of monopoles, based on the theory
of Ginzberg and collaborators. In 2000 the first results from an experiment (Fermilab

E882) searching for real magnetically charged particles bound to elements from the CDF
and D0 detectors were reported. This also required new developments in theory. The
status of the experimental limits on monopole masses will be discussed, as well as the
limitation of the theory of magnetic charge at present.

1. Maxwell’s Equations

The most obvious virtue of introducing magnetic charge is the symmetry thereby

imparted to Maxwell’s equations,

∇ · E = 4πρe, ∇ ·B = 4πρm, (1a)

∇×B =
1

c

∂

∂t
E +

4π

c
je, −∇×E =

1

c

∂

∂t
B +

4π

c
jm. (1b)

These equations are invariant under a global duality transformation. If E denotes

any electric quantity, such as E, ρe, or je, while M denotes any magnetic quantity,

such as B, ρm, or jm, the dual Maxwell equations are invariant under

E → E cos θ +M sin θ, M→M cos θ − E sin θ, (2)

where θ is a constant.

J. J. Thomson1 (1904) observed the remarkable fact that a static system of

an electric (e) and a magnetic (g) charge separated by a distance R possesses an
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Fig. 1. The relative motion of two dyons is confined to the surface of a cone about the direction
of the angular momentum.

angular momentum,

J =

∫

(dr) r ×G =

∫

(dr) r × E×B

4πc

=
1

4πc

∫

(dr) r×
[

er

r3
× g(r−R)

(r−R)3

]

=
eg

c
R̂, (3)

which follows from symmetry (the integral can only supply a numerical factor, which

turns out to be 4π). The quantization of charge follows by applying semiclassical

quantization of angular momentum:

J · R̂ =
eg

c
= n

h̄

2
, or eg =

n

2
h̄c, n = 0, ±1, ±2, . . . . (4)

2. Classical Scattering

Actually, earlier in 1896, Poincaré2 investigated the motion of an electron in the

presence of a magnetic pole. Let’s generalize to two dyons (a term coined by

Schwinger in 1969) with charges e1, g1, and e2, g2, respectively. There are two

charge combinations q = e1e2 + g1g2, κ = − e1g2−e2g1
c . Then the classical equation

of relative motion is (µ is the reduced mass and v is the relative velocity)

µ
d2

dt2
r = q

r

r3
− κv × r

r3
. (5)

The constants of the motion are the energy and the angular momentum,

E =
1

2
µv2 +

q

r
, J = r× µv + κr̂. (6)

Note that Thomson’s angular momentum is prefigured here.

Because J · r̂ = κ, the motion is confined to a cone, as shown in Fig. 1. Here the

angle of the cone is given by

cot
χ

2
=

l

|κ| , l = µv0b, (7)
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where v0 is the relative speed at infinity, and b is the impact parameter. The

scattering angle θ is given by

cos
θ

2
= cos

χ

2

∣

∣

∣

∣

sin

(

ξ/2

cosχ/2

)∣

∣

∣

∣

, where (8a)

ξ

2
=







tan−1
(

|κ|v0
q cot χ2

)

, q > 0,

π − tan−1
(

|κ|v0
|q| cot χ2

)

, q < 0.
(8b)

The impact parameter b(θ) is a multiple-valued function of θ. The differential cross

section is therefore

dσ

dΩ
=

∣

∣

∣

∣

b db

d(cos θ)

∣

∣

∣

∣

=
∑

χ

(

κ

2µv0

)2
1

sin4 χ
2

∣

∣

∣

∣

sinχdχ

sin θ dθ

∣

∣

∣

∣

. (9)

Representative results are given in Ref. 3.

The cross section becomes infinite in two circumstances; first, when

sin θ = 0 (sinχ 6= 0), θ = π, (10)

we have what is called a glory. For monopole-electron scattering this occurs for

χg
2

= 1.047, 1.318, 1.403, . . . . (11)

The other case in which the cross section diverges is when

dθ

dχ
= 0. (12)

This is called a rainbow. For monopole-electron scattering this occurs at

θr = 140.1◦, 156.7◦, 163.5◦, . . . . (13)

For small scattering angles we have the generalization of the Rutherford formula

dσ

dΩ
=

1

(2µv0)2

{

(

e1g2 − e2g1
c

)2

+

(

e1e2 + g1g2
v0

)2
}

1

(θ/2)4
, θ � 1. (14)

3. Quantum Theory

Dirac4 showed in 1931 that quantum mechanics was consistent with the existence of

magnetic monopoles provided the quantization condition (4) holds, which explains

the quantization of electric charge. This was generalized by Schwinger to dyons:

e1g2 − e2g1 =
n

2
h̄c. (15)

(Schwinger sometimes argued that n was an even integer, or even 4 times an integer.)
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One can see where this comes from by considering quantum mechanical scatter-

ing. To define the Hamiltonian, one must introduce a vector potential, which must

be singular because B 6= ∇×A. For example, a potential singular along the entire

line n̂ is

A(r) = −g
r

1

2

(

n̂× r

r − n̂ · r −
n̂× r

r + n̂ · r

)

= −g
r

cot θ φ̂ if n̂ = ẑ, (16)

which corresponds to the desired magnetic field from a magnetic monopole, B(r) =

g r

r3 . Invariance of the theory (wavefunctions must be single-valued) under string ro-

tations implies the charge quantization condition. This is a nonperturbative state-

ment.

Yang offered another approach, which is fundamentally equivalent.5 He insisted

that there be no singularities, but rather different potentials in different regions:

Aaφ =
g

r sin θ
(1− cos θ) =

g

r
tan

θ

2
, θ < π, (17a)

Abφ = − g

r sin θ
(1 + cos θ) = −g

r
cot

θ

2
, θ > 0. (17b)

These correspond to the same magnetic field, so must differ by a gradient:

Aaµ −Abµ =
2g

r sin θ
φ̂ = ∂µλ, λ = 2gφ. (18)

Requiring now that eieλ be single valued leads to the quantization condition (4).

There is also a intrinsic spin formulation, pioneered by Goldhaber.6 The energy

(6) differs by a gauge transformation from

H =
1

2µ

(

p2
r +

J2 − (J · r̂)2
r2

)

+
e1e2 + g1g2

r
, (19)

where

J = r× p + S, µv = p +
S× r

r2
. (20)

The quantization condition appears as S · r̂ = m′. This was elaborated long ago.7

The nonrelativistic Hamiltonian for a system of two interacting dyons is

H = − h̄
2

2µ

(

∇2 +
2m′

r2
cos θ

sin2 θ

1

i

∂

∂φ
− m′2

r2
cot2 θ

)

+
q

r
, (21)

where m′ = −(e1g2−e2g1)/h̄c. The wavefunction separates: ψ(r) = R(r)Θ(θ)eimφ,

where
(

d2

dr2
+

2

r

d

dr
+ k2 − 2µ

h̄2

q

r
− j(j + 1)−m′2

r2

)

R = 0, (22a)

−
[

1

sin θ

d

dθ

(

sin θ
d

dθ

)

− m2 − 2mm′ cos θ +m′2

sin2 θ

]

Θ = j(j + 1)Θ. (22b)
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The solution to the θ equation is the rotation matrix element: (x = cos θ)

U
(j)
m′m(θ) = 〈jm′|eiJ2θ/h̄|jm〉 ∝ (1− x)

m
′
−m

2 (1 + x)
m
′+m

2 P
(m′−m,m′+m)
j−m (x), (23)

where P
(m,n)
j are the Jacobi polynomials, or “monopole harmonics.” This forces m′

to be an integer. The radial solutions are confluent hypergeometric functions,

Rkj(r) = e−ikr(kr)LF (L+ 1− iη, 2L+ 2, 2ikr), (24a)

η =
µq

h̄2k
, k =

√
2µE

h̄
, L+

1

2
=

√

(

j +
1

2

)2

−m′2. (24b)

We solve the Schrödinger equation such that a distorted plane wave is incident,

ψin = exp i [k · r + η ln(kr − k · r)] . (25)

Then the outgoing wave has the form

ψout ∼
1

r
ei(kr−η ln 2kr)eim

′φ̄′f(θ), (26)

so up to an unobservable phase, the scattering amplitude is (here θ is the scattering

angle)

2ikf(θ) =

∞
∑

j=|m′|

(2j + 1)U
(j)
m′m′(π − θ)e−i(πL−2δL), (27)

in terms of the Coulomb phase shift, δL = argΓ(L+ 1 + iη). Note that the integer

quantization of m′ results from the use of an infinite (“symmetric”) string; an

unsymmetric string allows m′ = integer + 1
2 .

One can show that reorienting the string direction gives rise to an unobservable

phase.7 Note that this result is completely general: the incident wave makes an

arbitrary angle with respect to the string direction. Rotation of the string direction

is a gauge transformation.

Notice that small angle scattering is still given by the Rutherford formula:

dσ

dΩ
≈
(

m′

2k

)2
1

sin4 θ/2
, θ � 1, (28)

for electron-monopole scattering. The classical result is good roughly up to the first

classical rainbow. In general, one must proceed numerically. Various remarkable

results are shown in Ref. 3.

We can also include the effect of a magnetic dipole moment interaction, by

adding a term to the Hamiltonian,

− eh̄

2µc
γσ ·H, H = g

r

r3
. (29)
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Fig. 2. Relativistic scattering of a spin-1/2 electron by a heavy monopole.

For small scattering angles, the spin-flip and spin-nonflip cross sections are (for

γ = 1, θ � 1)

dσ

dΩ

∣

∣

∣

∣

F

≈
(

m′

2k

)2
sin2 θ/2

sin4 θ/2
,

dσ

dΩ

∣

∣

∣

∣

NF

≈
(

m′

2k

)2
cos2 θ/2

sin4 θ/2
. (30)

Note that the spin-flip amplitude always vanishes in the backward direction; the

spin-nonflip amplitude also vanishes there for conditions almost pertaining to an

electron: for m′ > 0, and γ = 1, dσ
dΩ (π) = 0. Various results are shown in Ref. 3.

All of this work was done many years ago in Ref. 3, which just goes to show that

“good work ages more slowly than its creators.” There was of course much earlier

work 8,9 A relativistic calculation of the scattering of a spin-1/2 Dirac particle by

a heavy monopole was given by Kazama, Yang, and Goldhaber.10 They also gave

helicity-flip and helicity-nonflip cross sections which are shown in Fig. 2. (Note for

θ = π, helicity nonflip corresponds to spin flip, and vice versa.)

4. Quantum Field Theory

The quantum field theory of magnetic charge has been developed by many people,

notably Schwinger11 and Zwanziger.12 A recent formulation suitable for eikonal

calculations is given in Ref. 13. Formal Lorentz invariance is demonstrated provided
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the quantization condition holds (rationalized units):

eagb − ebga
4π

=

{

n
2 , unsymmetric
n , symmetric

}

, n ∈ Z. (31)

(“Symmetric” and “unsymmetric” refer to the presence or absence of dual symmetry

in the solutions of Maxwell’s equations.)

The electric and magnetic currents are the sources of the field strength and its

dual:

∂νFµν = jµ and ∂ν ∗Fµν = ∗jµ , (32)

where
∗Fµν =

1

2
εµνστF

στ , (33)

which imply the dual conservation of electric and magnetic currents, jµ and ∗jµ,

respectively,

∂µj
µ = 0 and ∂µ

∗jµ = 0 . (34)

The first-order form of the action describing the interaction of a spin-1/2 electron

ψ and a spin-1/2 monopole χ is

W =

∫

(dx)

{

− 1

2
F µν(x) (∂µAν (x) − ∂νAµ (x)) +

1

4
Fµν(x)F

µν (x)

+ ψ̄(x) (iγ∂ + eγA(x) −mψ)ψ(x) + χ̄(x) (iγ∂ + gγB(x) −mχ)χ(x)

}

,(35)

where Aµ and Fµν are independent field variables and

Bµ(x) = −
∫

(dy)fν (x− y) ∗Fµν(y) , (36)

Here fµ(x) is the Dirac string function which satisfies the differential equation

∂µf
µ(x) = δ(x) , (37)

a formal symmetric solution of which is given by

fµ(x) = nµ (n · ∂)−1 δ(x) , fµ(x) = −fµ(−x), (38)

where nµ is an arbitrary vector. A corresponding dual form in terms of independent

variables Bµ and ∗Fµν can be immediately written down. Although from these

actions a complete path integral version of dual QED can be given,13 all that is

needed for our purposes here is the relativistic interaction between spinor electric

and magnetic currents jµ = eψ̄γµψ and ∗jµ = gχ̄γµχ:

W (j, ∗j) =

∫

(dx)(dx′)(dx′′) ∗jµ(x)εµνστ∂
νfσ (x− x′)D+ (x′ − x′′) jτ (x′′) , (39)
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where the photon propagator is denoted by D+(x− x′).

The modern path integral reformulation of the dual quantum electrodynamics

of electric and magnetic charges were used in Ref. 13 to rederive and generalize

the eikonal results of Urrutia14 for high-energy, low momentum-transfer scattering

between an electron and a monopole. A simplified version of the argument appears

in Ref. 15. In terms of the quantization condition (4), the scattering amplitude, for

an arbitrary direction of the incident particle, turns out to be

I(q) = −4πn

q2
e−2inφ, (40)

where q is the momentum transfer. Squaring this and putting in the kinematical

factors we obtain Urrutia’s result14

dσ

dt
=

(eg)2

4π

1

t2
, t = q2, (41)

which is exactly the same as the nonrelativistic, small angle result found in Eq. (28).

This calculation, however, points the way toward a proper relativistic treatment,

and will be extended elsewhere to the crossed process, the production of monopole-

antimonopole pairs through quark-antiquark annihilation.

5. Previous Searches for Magnetic Monopoles

In the context of “more unified” non-Abelian theories, classical composite monopole

solutions were discovered. The mass of these monopoles would be of the order of

the relevant gauge-symmetry breaking scale, which for grand unified theories is of

order 1016 GeV or higher. But there are models where the electroweak symmetry

breaking can give rise to monopoles of mass ∼ 10 TeV. Even the latter are not yet

accessible to accelerator experiments, so limits on heavy monopoles depend either

on cosmological considerations,16 or detection of cosmologically produced (relic)

monopoles impinging upon the earth or moon.17 However, a priori, there is no

reason that Dirac/Schwinger monopoles or dyons of arbitrary mass might not exist:

In this respect, it is important to set limits below the 1 TeV scale.

At the University of Oklahoma we are carrying out a direct search for monopoles

produced at the Tevatron, which we will describe in the next section. But indirect

searches have been proposed and carried out as well. De Rújula18 proposed looking

at the three-photon decay of the Z boson, where the process proceeds through a

virtual monopole loop. If we use his formula for the branching ratio for the Z → 3γ

process, compared to the current experimental upper limit19 for the branching ratio

of 10−5, we can rule out monopole masses lower than about 400 GeV, rather than

the 600 GeV quoted by De Rújula. Similarly, Ginzburg and Panfil20 and more

recently Ginzburg and Schiller21 considered the production of two photons with

high transverse momenta by the collision of two photons produced either from e+e−

or quark-(anti-)quark collisions. Again the final photons are produced through a

virtual monopole loop. Based on this theoretical scheme, an experimental limit



Status of Magnetic Monopoles

has appeared by the D0 collaboration,22 which sets the following bounds on the

monopole mass M :

M

n
>







610 GeV for S = 0
870 GeV for S = 1/2
1580 GeV for S = 1

, (42)

where S is the spin of the monopole. It is worth noting that a lower mass limit of

120 GeV for a Dirac monopole has been set by Graf, Schäfer, and Greiner,23 based

on the monopole contribution to the vacuum polarization correction to the muon

anomalous magnetic moment. (Actually, we believe that the correct limit, obtained

from the well-known textbook formula for the g-factor correction due to a massive

Dirac particle is 60 GeV.)

In Ref. 15 we have criticized these limits on theoretical grounds. They are based

on a naive application of duality, in which the quantization plays no role. Thus gauge

invariance is not demonstrated. The Euler-Heisenberg Lagrangian is used outside its

range of validity for hard photon processes. That the Euler-Heisenberg Lagrangian

is not an effective Lagrangian in the sense of capturing radiative corrections is

demonstrated by the disparate work of Refs. 24,25. Moreover, the substitution e→ g,

or

α→ αg =
137

4
n2, n = 1, 2, 3, . . . , (43)

is made, which implies the manifest inconsistency of perturbation theory (which is

already precluded by the nonperturbative quantization condition). The expansion

parameter is αg, which is huge. Instead of radiative corrections being of the or-

der of α for the electron-loop process, these corrections will be of order αg , which

implies an uncontrollable sequence of corrections. For example, the internal radia-

tive corrections to the four-photon box diagram have been computed by Ritus26

and by Reuter, Schmidt, and Schubert27 in QED. In the O(α2) term in the ex-

pansion of the EH Lagrangian, the coefficients of the (F 2)2 and the (F ∗F )2 terms

are multiplied by
(

1 + 40
9
α
π +O(α2)

)

and
(

1 + 1315
252

α
π +O(α2)

)

respectively. These

corrections become meaningless when we replace α → αg . Moreover, it is easy to

see15 that unitarity is violated by the formulas used in the D0 analysis unless the

monopole masses are above 1 TeV, so the limits quoted are meaningless.

6. Oklahoma Experiment: Fermilab E882

The best prior experimental limit on the direct accelerator production of magnetic

monopoles is that of Bertani et al.28: σ ≤ 2 × 10−34cm2 for M ≤ 850 GeV. The

fundamental mechanism is supposed to be a Drell-Yan process, p+ p̄→ m+m̄+X ,

where the cross section is given by

dσ

dM
= (68.5n)2β3 8πα2

9s

∫

dx1

x1

∑

i

Q2
i qi(x1)q̄i

(M2

sx1

)

. (44)

Here M is the invariant mass of the monopole-antimonopole pair, and we have

included a factor of β3 to reflect (1) phase space and (2) the velocity suppression of
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the magnetic coupling. Note that we are unable to calculate the elementary process

qq̄ → γ∗ → mm̄ perturbatively, so we must use nonperturbative estimates.

Any monopole produced at Fermilab loses energy as it passes through the de-

tector by ionization (computed using the energy loss formula of Ahlen29) and is

trapped in the detector elements with 100% probability due to interaction with

the magnetic moments of the nuclei. The experiment consists of running sam-

ples obtained from the old D0 and CDF detectors through a superconducting in-

duction detector. A schematic of our induction detector is shown on the web at

http://www.nhn.ou.edu/%7Egrk/apparatus.pdf. We are able to set much better

limits than Bertani et al. because the integrated luminosity delivered to D0 is 104

larger than that of the previous 1990 experiment:
∫

L = 172± 8 pb−1.

If q = e1e2 + g1g2 < 0, HNR in Eq. (21) gives binding of dyons

Enj = −µ
2
q2
[

n+
1

2
+
(

(j + 1/2)2 −m′2
)1/2

]−2

. (45)

Monopoles will not bind this way—a magnetic moment coupling as in Eq. (29) is

required, in terms the gyromagnetic ratio γ = 1 + κ = g
2 . (γ = 1 or g = 2 is the

“normal” value.) The theory15 is somewhat complicated and most inconclusive, as

Table 1 shows.

Table 1. Weakly bound states of nuclei to a magnetic monopole. The angular momentum quantum
number J of the lowest bound state is indicated. In Notes, NR means nonrelativistic and R
relativistic calculations; hc indicates an additional hard core interaction is assumed, while FF
signifies use of a form factor. IM means induced magnetization, an additional interaction employed
for the relativistic spin-1 calculation. We use n = 1 except for the deuteron, where n = 2 is required
for binding.

Nucleus Spin γ J Eb Notes Ref

n 1
2 −1.91 1

2 350 keV NR,hc 30

1
1H

1
2 2.79 l − 1

2 = 0 15.1 keV NR,hc 31

320 keV NR,hc 30

50–1000 keV NR,FF 32

263 keV R 33

2
1H 1 0.857 l − 1 = 0 (n = 2) 130

λ keV R,IM 34

3
2He 1

2 −2.13 l + 1
2 = 3

2 13.4 keV NR,hc 31

27
13Al 5

2 3.63 l − 5
2 = 4 2.6 MeV NR,FF 32

27
13Al 5

2 3.63 l − 5
2 = 4 560 keV NR,hc 35

113
48 Cd 1

2 −0.62 l + 1
2 = 49

2 6.3 keV NR,hc 31

Unfortunately, the simple theory says that Be (of which the beam pipe is made)

will not bind to monopoles (S = 3/2, γ < 0), but the strength of the magnetic

field in the vicinity of a monopole will mostly likely disrupt the nucleus, ensuring
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binding. Al and Pba are okay.

Estimates of binding energies are in the keV range and up. Simple estimations

show that an energy of an eV is sufficient to bind a monopole to a nucleus with a 10

year lifetime, and then the monopole-atom complex will remain permanently bound

to the material lattice. (Evidently, it would not do to melt the material down.)

A characteristic signal would be produced in a superconducting loop contained

within a superconducting can by a magnetic monopole of strength g pulled through

it. Note that if the shield were not present, the supercurrent induced in the loop of

inductance L and radius R would be given by

I(t) =
2πg

Lc

(

1− z(t)
√

R2 + z(t)2

)

, (46)

where z(t) is the vertical position of the monopole relative to the position of the

center of the loop. The theory including the shield correction can be verified with

a pseudopole.

Background effects are enormous. All nonmagnetic but conducting samples

possess:

• Permanent magnetic dipole moments (in the absence of boundaries):

I(t) = −2πµz
Lc

R2

[R2 + z(t)2]3/2
(47)

• Induced magnetization: (a is the radius of the superconducting cylinder)

I(t) =
v

c3
1

L

∫

(dr)r2σ(r)
∂Bz
∂z′

(z′)
1

R
H

(

z′

R
,
a

R

)

, (48)

where v is the velocity with which the sample is pulled through the detector,

σ is the conductivity of the sample, and

H

(

z′

R
,
a

R

)

=

∫ ∞

0

dy y cos y
z′

R

[

K1(y)− I1(y)
K1(ya/R)

I1(ya/R)

]

(49a)

→ π

2

R3

(R2 + z′2)3/2
, a/R→∞. (49b)

Calibration and real data are shown in the Figures. The pseudopole data (Fig. 3)

clearly shows that we could detect a Dirac pole. As one sees from Fig. 4 real

samples have “large” dipole signals; what we are looking for is an asymptotic “step”

indicating the presence of a magnetic charge. Steps seen are typically much smaller

than that expected of a magnetic pole of Dirac strength. The histogram of steps

is shown in Fig. 5. For n = 1 the 90% confidence upper limit is 4.2 signal events

a22% of naturally occurring Pb is 207

82
Pb, which has spin 1/2 and γ = 0.582, which is sufficient for

binding in the lowest angular momentum state.15 The other three stable isotopes have spin 0.
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Fig. 3. “Pseudopole” curves. a) Comparison of theoretical monopole response to an experimental
calibration and of a simple point dipole of one sample with that calculated from the theoretical
response curve. b) The observed “step” for a pseudopole current, corresponding to 2.3 minimum

Dirac poles, embedded in an Al sample.

Table 2. Acceptances, upper cross section limits, and lower mass limits, as determined in this
work (at 90% CL).

Magnetic Charge |n| = 1 |n| = 2 |n| = 3 |n| = 6
Sample Al Al Be Be

∆Ω/4π acceptance 0.12 0.12 0.95 0.95
Mass Acceptance 0.22 0.060 0.0018 0.11
Number of Poles < 4.2 < 2.4 < 2.4 < 2.4

Cross section limit 0.84 pb 1.9 pb 8.4 pb 0.17 pb
Monopole Mass Limit > 263 GeV > 282 GeV > 284 GeV > 413 GeV

for 8 events observed when 10 were expected.36 These 8 samples were remeasured

and all fell within ±1.47 mV of n = 0 (more than 1.28σ from n = ±1). For n = 2

the 90% confidence upper limit is 2.4 signal events for zero events observed and

zero expected. Then, by putting in angular and mass acceptances we can get cross

section limits as shown in Table 2. These numbers reflect a new analysis, and so

differ somewhat from our published results.37 To obtain the mass limits, we use the

model cross sections referred to above.
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