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3

Relativistic Transformations

3.1 Four-Dimensional Notation

A space-time coordinate can be represented by a contravariant vector,

xµ : x0 = ct , x1 = x , x2 = y , x3 = z , (3.1)

where µ is an index which takes on the values 0, 1, 2, 3. The corresponding
covariant vector is

xµ : x0 = −ct , x1 = x , x2 = y , x3 = z . (3.2)

The contravariant and covariant vector components are related by the metric
tensor gµν ,

xµ = gµνxν , (3.3)

which uses the Einstein summation convention of summing over repeated
covariant and contravariant indices,

gµνxν =

3
∑

ν=0

gµνxν . (3.4)

From the above explicit forms for xµ and xν we read off, in matrix form (here
the first index labels the rows, the second the columns, both enumerated from
0 to 3)1

gµν =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, (3.5)

1 In this book, we use what could be referred to as the democratic metric (formerly
the East-coast metric), in which the signature is dictated by the larger number
of entries.
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where evidently gµν is symmetric,

gµν = gνµ . (3.6)

Similarly,
xµ = gµνxν , (3.7)

where

gµν =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, gµν = gνµ . (3.8)

The four-dimensional analogue of a rotationally invariant length is the proper
length s or the proper time τ :

s2 = −c2τ2 = xµxµ = xµgµνxν = xµgµνxν = r · r − (ct)2 . (3.9)

Recall the transformation of a scalar field under a coordinate displace-
ment,2 as in (1.76),

δφ(r) = −δr · ∇φ(r), ∇ =
∂

∂r
. (3.11)

The corresponding four-dimensional statement is

δφ(x) = −δxµ∂µφ(x) ∂µ =
∂

∂xµ
, (3.12)

which shows the definition of the covariant gradient operator, so defined in
order that ∂µxµ be invariant. The corresponding contravariant gradient is

∂µ = gµν∂ν =
∂

∂xµ
. (3.13)

Using these operators we can write the equation of electric current con-
servation, (1.14),

∇ · j +
∂

∂t
ρ = 0 , (3.14)

in the four-dimensional form
∂µjµ = 0 , (3.15)

2 There is a sign change relative to what appears in Chap. 1. That is because we are
now considering passive transformations. Thus, under an infinitesimal coordinate
displacement, a scalar field transforms according to φ(x + δx) = φ(x), while δφ

is defined at the same coordinate:

δφ(x) = φ(x) − φ(x) = φ(x − δx) − φ(x) . (3.10)
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where we define the components of the electric current four-vector as

jµ : j0 = cρ , {ji} = j , (3.16)

where we have adopted the convention that Latin indices run over the values
1, 2, 3, corresponding to the three spatial directions. Note that (3.16) is quite
analogous to the construction of the position four-vector, (3.1).

The invariant interaction term (1.61)

Lint = −ρφ +
1

c
j ·A (3.17)

has the four-dimensional form

1

c
jµAµ , (3.18)

where
Aµ = gµνAν , A0 = φ , {Ai} = A . (3.19)

The four dimensional generalization of

B = ∇ × A (3.20)

is the tensor construction

Fµν = ∂µAν − ∂νAµ , (3.21)

where the antisymmetric field strength tensor

Fµν = −Fνµ (3.22)

contains the magnetic field components as

F23 = B1 , F31 = B2 , F12 = B3 , (3.23)

which may be presented more succinctly as

Fij = ǫijkBk , (3.24)

which uses the totally antisymmetric Levi-Cività symbol:

ǫ123 = ǫ231 = ǫ312 = −ǫ213 = −ǫ132 = −ǫ321 = 1 , (3.25)

all other components being zero. The construction (3.21) includes the other
potential statement (1.48),

E = −∇φ − 1

c

∂

∂t
A , (3.26)
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provided
F0i = −Ei . (3.27)

Alternatively, with
Fµ

ν = gµλFλν , (3.28)

we have
F 0

i = Ei . (3.29)

Maxwell’s equations with only electric currents present are summarized by

∂νFµν =
1

c
jµ , (3.30a)

∂λFµν + ∂µFνλ + ∂νFλµ = 0 , (3.30b)

where
Fµν = Fµ

λgλν = gµκFκλgλν . (3.31)

It is convenient to define a dual field-strength tensor by

∗Fµν =
1

2
ǫµνκλFκλ = −∗F νµ , (3.32)

where ǫµνκλ is the four-dimensional totally antisymmetric Levi-Cività symbol,
which therefore vanishes if any two of the indices are equal, normalized by

ǫ0123 = +1 . (3.33)

We now have

∗F 01 = F23 = B1 , ∗F 02 = F31 = B2 , ∗F 03 = F12 = B3 , (3.34)

and

∗F 23 = F01 = −E1 , ∗F 31 = F02 = −E2 , ∗F 12 = F03 = −E3 , (3.35)

so indeed the dual transformation corresponds to the replacement

E → B , B → −E . (3.36)

[This is a special case of the duality rotation (1.219).] Note that two dual
operations brings you back to the beginning:

∗(∗Fµν) = −Fµν . (3.37)

Using the dual, Maxwell’s equations including both the electric (jµ) and
the magnetic (∗jµ) currents (called je and jm in the problems in the previous
chapter) are given by

∂νFµν =
1

c
jµ , ∂ν

∗Fµν =
1

c
∗jµ , (3.38)
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where both currents must be conserved,

∂µjµ = c∂µ∂νFµν = 0 , (3.39a)

∂µ
∗jµ = c∂µ∂ν

∗Fµν = 0 , (3.39b)

because of the symmetry in µ and ν of ∂µ∂ν and the antisymmetry of Fµν

and ∗Fµν .
We had earlier in (3.9) introduced the proper time. The corresponding

differential statement is

dτ =
1

c

√

−dxµdxµ = dt

√

1 − v2

c2
, (3.40)

which is an invariant time interval. The particle equations of motion using τ
as the time parameter read (see Problem 3.1)

m0

d2xµ

dτ2
=

e

c
Fµ

ν
dxν

dτ
, (3.41)

to which is to be added g
c
∗Fµ

νdxν/dτ if the particle possesses magnetic charge
g. We can write down three alternative forms for the action of the particle:

W12 =

∫ 1

2

(

−m0c
2dτ +

e

c
Aµdxµ

)

(3.42a)

=

∫ 1

2

dτ

[

1

2
m0

(

dxµ

dτ

dxµ

dτ
− c2

)

+
e

c
Aµ

dxµ

dτ

]

(3.42b)

=

∫ 1

2

dτ

[

pµ

(

dxµ

dτ
− vµ

)

+
1

2
m0

(

vµvµ − c2
)

+
e

c
Aµvµ

]

.(3.42c)

In the last two forms, τ is an independent parameter, with the added require-
ment that each generator G [recall the action principle states δW12 = G1−G2]
is independent of δτ . In the third version, where xµ, vµ, and pµ are indepen-
dent dynamical variables, it is a consequence of the action principle that

vµ =
dxµ

dτ
, pµ = m0v

µ +
e

c
Aµ , vµvµ = −c2 , (3.43a)

dpµ

dτ
=

e

c
∂µAλvλ . (3.43b)

The invariant Lagrange function for the electromagnetic field (1.60) is

Lf = −1

4
FµνFµν =

E2 − B2

2
. (3.44)

The energy-momentum, or stress tensor, subsumes the energy density, the
momentum density (or energy flux vector) and the three-dimensional stress
tensor:
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T µν = T νµ = FµλF ν
λ − gµν 1

4
FκλFκλ ; (3.45)

It has the property of being traceless:

T µ
µ = gµνT µν = 0 , (3.46)

and has the following explicit components:

T 00 = U , T 0
k =

1

c
Sk = cGk , Tij = Tij , (3.47)

in terms of the energy density, (1.20a), the energy flux vector (1.20b) or mo-
mentum density (1.20c), and the stress tensor (1.20d). It satisfies the equation

∂νT µν = −Fµν 1

c
jν , (3.48)

which restates the energy and momentum conservation laws (1.44a) and
(1.44b).

3.2 Field Transformations

A Lorentz transformation, or more properly a boost, is a transformation that
mixes the time and space coordinates without changing the invariant distance
s2. An infinitesimal transformation of this class is

δr = δvt , δt =
1

c2
δv · r , (3.49)

where −δv is the velocity with which the new coordinate frame moves relative
to the old one. (It is assumed that the two coordinate frames coincide at
t = 0.) In terms of the four-vector position, xµ = (ct, r), we can write this
result compactly as

δxµ = δωµνxν , (3.50)

where the only nonzero components of the transformation parameter δωµν are

δω0i = −δωi0 =
δvi

c
. (3.51)

Ordinary rotations of course also preserve s2, so they must be included in the
transformations (3.50), and they are, corresponding to δωµν having no time
components, and spatial components

δωij = −ǫijkδωk , (3.52)

so, as in (1.81),
δr = δω × r . (3.53)
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In fact, the only property δωµν must have in order to preserve the invariant
length s2 is antisymmetry:

δωµν = −δωνµ , (3.54)

for
δ(xµxµ) = 2δωµνxµxν = 0 , (3.55)

and a scalar product, such as that in jµAµ is similarly invariant. Any infinites-
imal transformation with this property we will dub a Lorentz transformation.

Now consider the transformation of a four-vector field, such as the vec-
tor potential, Aµ = (φ,A). This field undergoes the same transformation as
given by the coordinate four-vector, but one must also transform to the new
coordinate representing the same physical point. That is, under a Lorentz
transformation,

Aµ(x) → A
µ
(x) = Aµ(x) + δωµνAν(x) , (3.56)

where
xµ = xµ + δxµ = xµ + δωµνxν . (3.57)

So that the transformation may be considered a field variation only, we define
the change in the field at the same coordinate value (which refers to different
physical points in the two frames):

δAµ(x) = A
µ
(x) − Aµ(x)

= Aµ(x − δx) + δωµνAν(x) − Aµ(x)

= −δxν∂νAµ(x) + δωµνAν(x) . (3.58)

The four-vector current jµ = (cρ, j) must transform in the same way:

δjµ = −δxν∂νjµ(x) + δωµνjν(x) . (3.59)

A scalar field, λ(x), on the other hand only undergoes the coordinate
transformation:

λ(x) → λ(x) = λ(x) , (3.60)

so
δλ(x) = −δxν∂νλ(x) . (3.61)

Because a vector potential can be changed by a gauge transformation,

Aµ → Aµ + ∂µλ , (3.62)

without altering any physical quantity, in particular the field strength tensor
Fµν , the transformation law for the vector potential must follow by differen-
tiating that of λ, and indeed it does.

What about the transformation property of the field strength tensor?
Again, it follows by direct differentiation:
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δFµν = δ(∂µAν − ∂νAµ)

= −δxλ∂λFµν − (∂µδxλ)∂λAν + (∂νδxλ)∂λAµ + δωνλ∂µAλ − δωµλ∂νAλ

= −δxλ∂λFµν + δωµ
λFλν + δων

λFµλ . (3.63)

So we see that each index of a tensor transforms like that of a vector. From
this it is easy to work out how the components of the electric and magnetic
fields transform under a boost (3.51). Apart from the coordinate change –
which just says we are evaluating fields at the same physical point – we see
[cf. (1.230)]

‘δ’E = −δv

c
× B , (3.64a)

‘δ’B =
δv

c
× E , (3.64b)

The proof of the Lorentz invariance the relativistic Lagrangian is now
immediate. That is,

δL = −δxλ∂λL , (3.65)

which just says that L(x) = L(x), implying that δW = δ
∫

(dx)L(x) = 0. We
have already remarked that ‘δ’Lint = 0. The invariance of the field Lagrangian
(3.44) is simply the statement

‘δ’Lf = δωµνFµλF ν
λ = 0 , (3.66)

and the particle action in (3.42a)–(3.42c) is manifestly invariant.

3.3 Problems for Chap. 3

1. Show that the time and space components of (3.41) are equivalent to the
equations of motion (1.45a) and (1.45b) provided the relativistic form
of the particle kinetic energy and momentum, (1.18a) and (1.18b), are
employed.

2. Derive the first form of the particle action (3.42a) from the relativistic
particle Lagrangian −m0c

2
√

1 − v2/c2 and the interaction (3.17).
3. Obtain the equations resulting from variations of the second form of the

particle action (3.42b) with respect to both xµ and τ variations, and verify
that these are as expected.

4. A covariant form for the current vector of a moving point charge e is the
proper-time integral

1

c
jµ(x) =

∫

∞

−∞

dτ e
dxµ(τ)

dτ
δ(x − x(τ)) . (3.67)

Verify that
∂µjµ = 0 , (3.68)
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under the assumption that the charge is infinitely remote at τ = ±∞.
Show that

∫

(dr)
1

c
j0(x) = e , (3.69)

provided dx0(τ)/dτ is always positive. The stress tensor T µν for a mass
point is given analogously by

T µν(x) =

∫

∞

−∞

dτ m0c
dxµ(τ)

dτ

dxν(τ)

dτ
δ(x − x(τ)) . (3.70)

Verify that
∂νT µν(x) = 0 , (3.71)

provided the particle is unaccelerated (d2xµ(τ)/dτ2 = 0). Then show that

∫

(dr)T 0ν = m0c
dxν(τ)

dτ
. (3.72)

Does this comprise the expected values for the energy and momentum
(multiplied by c) of a uniformly moving particle?

5. Suppose the particle of the previous problem is accelerated – it carries
charge e and moves in an electromagnetic field. Use the covariant equa-
tions of motion (3.41) to show that

∂νT µν
part =

1

c
Fµ

νjν . (3.73)

What do you conclude by comparison with the corresponding divergence
of the electromagnetic stress tensor, (3.48)?

6. The next several problems refer to a purely electromagnetic model of the
electron described first in [12]. A spherically symmetrical distribution of
charge e at rest has the potentials φ = ef(r2), A = 0, where, at distances

large compared with its size, f(r2) ∼ 1/
√

r2. As observed in a frame in
uniform relative motion, the potentials are

Aµ(x) =
e

c
vµf(ξ2) , ξµ = xµ +

vµ

c

(

vλ

c
xλ

)

, (3.74)

where

vλξλ = 0 , ξ2 = x2 +

(

vλ

c
xλ

)2

. (3.75)

Check that for motion along the z axis with velocity v,

ξ2 = x2 + y2 +
(z − vt)2

1 − v2/c2
, (3.76)

as could be inferred from Problem 31.1 of [9]. Compute the field strengths
Fµν and evaluate the electromagnetic field stress tensor (3.45).
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7. From the previous problem, use the field equation (3.30a) to produce
jµ(x). Check that ∂µjµ = 0. Construct Fµν 1

c jν and note that its vector
nature lets one write

Fµν 1

c
jν = −∂µt(ξ2) . (3.77)

Exhibit t(ξ2) for the example f(ξ2) = (ξ2 +a2)−1/2. Inasmuch as the field
tensor obeys (3.48)

∂νT µν
f = −Fµν 1

c
jν = ∂µt , (3.78)

one has realized a divergenceless electromagnetic tensor:

T µν = T µν
f − gµνt , ∂νT µν = 0 . (3.79)

It is the basis of a purely electromagnetic relativistic model of mass. There
is, however, an ambiguity, because from (3.75)

∂ν

(

vµ

c

vν

c
t(ξ2)

)

= 0 . (3.80)

Therefore,

T µν = T µν
f −

(

gµν +
vµ

c

vν

c

)

t , (3.81)

for example, is also a possible electromagnetic tensor. Choice (3.79) has
the property that the momentum density of the moving system (multiplied
by c) is just that of the field,

T 0k = T 0k
f = (E × B)k . (3.82)

Choice (3.81) is such that the energy density of the system at rest is just
that of the field,

v = 0 : T 00 = T 00
f =

E2

2
. (3.83)

One cannot have both. That requires t = 0; that is, no charge. The system
then is an electromagnetic pulse – it moves at the speed c.

8. Without specializing f(ξ2), integrate over all space (by introducing the
variable z′ = (z − vt)/

√

1 − v2/c2) to show that, whether one uses tensor
(3.79) or (3.81),

E =

∫

(dr)T 00 =
mc2

√

1 − v2/c2
, pk =

1

c

∫

(dr)T 0
k =

mvk
√

1 − v2/c2
.

(3.84)
What numerical factor relates m is scheme (3.79) to that in scheme (3.81)?

9. Repeat the action discussion following from (3.42c) with m0 = 0 and
unspecified f(ξ2). What mass emerges?
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10. Verify that the Maxwell equations involving magnetic currents, the second
set in (3.38), can also be given by

∂λFµν + ∂µFνλ + ∂νFλµ = ǫµνλκ
1

c
∗jκ . (3.85)

11. A particle has velocity components vx = dx
dt and vz = dz

dt in one coordinate
frame. There is a second frame with relative velocity v along the z axis.
What are the velocity components v′x = dx′

dt′ and v′z = dz′

dt′ in this frame?
Give a simple interpretation of the v′x result for vz = 0.

12. Let the motion referred to in the previous problem be that of light, moving
at angle θ with respect to the z axis. Find cos θ′ and sin θ′ in terms of
cos θ and sin θ. Check that cos2 θ′ +sin2 θ′ = 1. Exhibit θ′ explicitly when
β = v/c ≪ 1.

13. The infinitesimal transformation contained in (3.51)

δp =
δv

c

E

c
,

δE

c
=

δv

c
· p , (3.86)

identify the four-vector of momentum pµ = (E/c,p) What is the value of
the invariant pµpµ for a particle of rest mass m0? Apply the analogue of
the space-time transformation equations

t′ =
t + v · r/c2

√

1 − v2/c2
, v · r′ = v · r + vt

√

1 − v2/c2
(3.87)

to find the energy and momentum of a moving particle from their values
when the particle is at rest.

14. A body of mass M is at rest relative to one observer. Two photons, each of
energy ǫ, moving in opposite directions along the x-axis, fall on the body,
and are absorbed. Since the photons carry equal and opposite momenta,
no net momentum is transferred to the body, and it remains at rest.
Another observer is moving slowly along the y axis. Relative to him, the
two photons and the body, both before and after the absorption act, have
a common velocity v (|v| ≪ c) along the y axis, Reconcile conservation
of the y-component of momentum with the fact that the velocity of the
body does not change when the photons are absorbed.

15. Show, very simply, that B, the magnetic field of a uniformly moving charge
is 1

cv × E. Then consider two charges, moving with a common velocity v

along parallel tracks, and show that the magnetic force between them is
opposite to the electric force, and smaller by a factor of v2/c2. (This is an
example of the rule that like charges repel, like currents attract.) Can you
derive the same result by Lorentz transforming the equation of motion in
the common rest frame of the two charges? (Hint: Coordinates perpendic-
ular to the line of relative motion are unaffected by the transformation.)

16. This continues Problems 1.13–17. The relativistic formula
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dN =
(dk)

k0

α

4π2

(

v1

kv1

− v2

kv2

)2

(3.88)

describes the number of photons emitted with momentum kµ under the
deflection of a particle: vµ

1 → vµ
2 . (Here, the scalar product is denoted

by kv1 = kµv1µ, etc.) More realistic is a collision of two particles, with
masses ma, mb and charges ea and eb. When, as a result of a collision
in which the particle velocities change from va2, vb2 to va1, vb2, what is
dN? Suppose this collision satisfies the conservation of energy-momentum,
(pµ

a + pµ
b )1 = (pµ

a + pµ
b )2. Rewrite your expression for dN in terms of the

pµ rather than the vµ. What follows if it should happen that e/kp has
the same value for both particles, before and after the collision. Connect
the nonrelativistic limit of this circumstance with Problem 1.13. Verify
that this special circumstance does hold relativistically in the head-on,
center-of-mass collision, where all momenta are of equal magnitude, for
radiation perpendicular to the line of motion of the particles, provided
ea/Ea = eb/Eb. What restriction does this impose on the energy if the
particles are identical (same charge and rest mass)?

17. Use the fact that

kµ

(

vµ
1

kv1

− vµ
2

kv2

)

= 0 (3.89)

for example to show that

(

v1

kv1

− v2

kv2

)2

=

(

n ×
(

v1

kv1

− v2

kv2

))2

. (3.90)

Repeat the calculation of Problem 1.16 using this form and show the
identity of the two results.

18. From the response of a particle momentum to an infinitesimal Lorentz
transformation (3.86), find the infinitesimal change of the particle velocity
V when V and δv are in the same direction. Compare your result with
the implication of the formula for the relativistic addition of velocities.

19. Light travels at the speed c/n in a stationary, nondispersive medium.
What is the speed of light when this medium is moving at speed v parallel
or antiparallel to the direction of the light? To what does this simplify
when v/c ≪ 1?

20. An infinitesimal Lorentz transformation (boost) is characterized by a pa-
rameter δθ = δv/c. Assuming that δv lies along the z direction, construct
and solve the first-order differential equations obeyed by ct(θ)±z(θ). What
do the solutions tell you about the relation between θ and v/c? How does
the addition of velocity formula read in terms of the corresponding θs?
(The angle θ is often referred to as the “rapidity.”)

21. The frequency ω and the propagation vector k of a plane wave form a
four-vector: kµ = (ω/c,k). Check that kµkµ = 0 and that exp(ikµxµ) =
exp[i(k · r − ωt)]. Use Lorentz transformations to show that radiation, of
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frequency ω, propagating at an angle θ with respect to the z axis, will, to
an observer moving with relative velocity v = βc along the z axis, have
the frequency

ω′ =
1

√

1 − β2
ω(1 − β cos θ) (3.91)

(this is the Doppler effect) and an angle relative to the z axis given by

cos θ′ =
cos θ − β

1 − β cos θ
(3.92)

(this is aberration). Find θ′ explicitly for |β| ≪ 1.
22. By writing the angle relation (3.92) as

cos θ − cos θ′ = β(1 − cos θ cos θ′) , (3.93)

show that

tan
1

2
θ′ =

√

1 + β

1 − β
tan

1

2
θ , (3.94)

or, replacing the angle θ for the direction of travel by the angle α = π − θ
for the direction of arrival,

tan
1

2
α′ =

√

1 − β

1 + β
tan

1

2
α . (3.95)

23. An ellipse of eccentricity β is inscribed in a circle. The major axis of the
ellipse lies along the x axis, the origin of which is the center of the circle.
A line drawn from the origin to a point on the circle makes an angle α
with the x axis. Now one finds a related point on the ellipse by moving
down, perpendicularly to the x axis, from the point on the circle. A line
drawn from the left-hand focus of the ellipse to this point on the ellipse
makes an angle α′ with the x axis. Show that the relation between α and
α′ is that of (3.95).

24. Show that the 4-potential produced by a charged particle with 4-velocity
vµ is

Aµ(x) =
1

4π

∫

ds′η(x0 − x0′(s′))2δ[(x − x′(s′))2]evµ(s′)

= − e

4π

vµ(s′)

(x − x′(s′))v(s′)
. (3.96)

Here η is the unit step function (the corresponding capital letter looks like
the initial letter of Heaviside)

η(x) =

{

1 , x > 0 ,
0 , x < 0 .

(3.97)

Make explicit what is left implicit in the result (3.96). Write the result
in 3 + 1 dimensional notation and compare with the Liénard-Wiechert
potentials (1.125) and (1.126).
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25. A charge at rest scatters radiation with unchanged frequency. Give a rel-
ativistically invariant form to this statement. Then deduce that radiation
of frequency ω0, moving in the direction of unit vector n0, which is scat-
tered by a charge with velocity v into the direction of unit vector n, has
the frequency

ω = ω0

1 − n0 · v

c

1 − n · v

c

. (3.98)

26. Find the total scattering cross section for the scattering of radiation by a
charge that is moving with velocity v in the direction of the incident radi-
ation. Assume that β = v/c is small so that is an essentially nonrelativistic
calculation.

27. Repeat the above using a relativistic calculational method. Check the
consistency of the result with that of the β ≪ 1 calculation.

28. The classical statement that light is scattered with unchanged frequency
by a charge at rest appears generally as, in four-vector notation,

v2 = −c2 : kv = k0v , or v(k − k0) = 0 . (3.99)

Now think of a photon scattered by a charged particle. If initial momenta
are denoted by a subscript 0, the statement of energy-momentum conser-
vation reads

(h̄k + p)µ = (h̄k0 + p0)
µ , (3.100)

where
k2 = k2

0 = 0 , p2 = p2
0 = −m2

0 , (3.101)

where m0 is the rest mass of the particle. Show that

(p + p0)(k − k0) = 0 , (3.102)

or in terms of 4-velocities, given by pµ = m0v
µ, pµ

0 = m0v
µ
0 , that

1

2
(v + v0)(k − k0) = 0 . (3.103)

Thus the classical result (3.99) appears when the difference between vµ

and vµ
0 can be neglected in

(

1

2
(v + v0)

)2

+

(

1

2
(v − v0)

)2

= −c2 . (3.104)

The nearest quantum equivalent to the classical rest frame occurs when
p0 = −p. In that frame let k0 and k each make an angle 1

2
θ with respect

to the plane perpendicular to p. Check that (3.102) implies ω = ω0. what
is the value of |p| = |p0| in terms of ω0 and the photon scattering angle
θ? Under what circumstances can the equal and opposite velocities v and
v0 be regarded as negligible? (This is the underlying principle of the Free
Electron Laser [13].)
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29. Integrate the invariant (dk)2δ(k2), where (dk) = dk0(dk), over all k0 > 0
to arrive at the invariant

(dk)

|k| =
ω dω

c2
dΩ , ω = kc , (3.105)

in which dΩ is an element of solid angle. Use the Doppler effect formula
(3.91) to deduce the solid angle transformation law,

dΩ′ =
1 − β2

(1 − β cos θ)2
dΩ . (3.106)

Then get it directly from the aberration formula (3.92). What did you
assume about the azimuthal angle φ, and why? Check that the above
relation is consistent with the requirement that

∫

dΩ′ = 4π.
30. Let vµ be the four-vector velocity γ(c,v), γ = (1−v2/c2)−1/2 of a physical

system. Use the invariance of kµvµ, in relating ω′, a frequency observed
when the system is at rest, to quantities measured when the system is in
motion along the z-axis with velocity v. Compare with a result found in
Problem 21. Show that the invariant

I =
dpµ

dτ

dpµ

dτ
−

(

mc
kµdpµ/dτ

kνpν

)2

, (3.107a)

is written as

I =

(

E

mc2

)2
[

ṗ2 −
(

1

c
Ė

)2

−
(

mc2

E

)2
(n · ṗ− Ė/c)2

(1 − n · pc/E)2

]

, (3.107b)

which appears in the angular distribution given in (3.111).
31. Verify that the energy radiated per unit time into a unit solid angle, by a

system that is momentarily at rest, is given, in any coordinate frame, by
the invariant expression

− d2pµ

dτ dΩ′
vµ , (3.108)

where vµ is the velocity 4-vector of the system; dΩ′ refers to the rest
frame. Then use the relation between the momentum and the energy of
the radiation moving in a given direction (unit vector n) to write the
above radiation quantity, for a system moving with velocity v, as

d2E

dt dΩ′

1 − n · v/c

1 − v2/c2
. (3.109)

32. The power radiated in the direction n, per unit solid angle dΩ′, by an
accelerated charge that is momentarily at rest, is given by (1.167) or

e2

(4π)2c3
(n × v̇)2 =

e2

(4π)2c3
[v̇2 − (n · v̇)2] . (3.110)
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Now combine this with the results of (3.109), (3.106), and (3.107b) to
produce the power radiated into a solid angle dΩ,

dP

dΩ
=

e2

(4π)2m2c3

(

mc2

E

)2
[

ṗ2 − (Ė/c)2

(1 − n · pc/E)3
−

(

mc2

E

)2
(n · ṗ− Ė/c)2

(1 − n · pc/E)5

]

.

(3.111)
This result is the same as that given in (1.210) upon substituting there
v = pc2/E.


