
Physics 5573. Electrodynamics I.

Final Examination

Fall 2007

December 14, 2007

Instructions: This examination consists of four problems. If you get
stuck on one part, assume a result and proceed onward. Show all your work.
Do not hesitate to ask questions. GOOD LUCK!

HAVE A GREAT HOLIDAY BREAK!

1. The action describing a particle of rest mass m0 interacting with a
given vector potential Aµ = (φ,A) is

W12 =
∫ 1

2

[

−m0c
2 dτ +

e

c
Aµdxµ

]

,

where the 4-velocity of the particle is

vµ =
dxµ

dτ
,

and the proper time element is related to the trajectory of the particle
by

c dτ =
√

−dxµdxµ.

(a) By varying the above action with respect to the particle trajectory,

xµ → xµ + δxµ,

obtain the equation of motion in terms of a second-order differen-
tial equation relating d2xµ/dτ 2 to the vector potential Aµ and the
particle velocity vµ.
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(b) Verify that this equation agrees with Newton’s law, with the Lorentz
force, in the nonrelativistic limit.

2. Consider a long straight wire, of negligible cross section, carrying a
current I. Calculate the magnetic field produced by this wire as follows.

(a) In the radiation gauge, derive the differential equation satisfied by
the vector potential.

(b) In cylindrical coordinates, with the z axis coinciding with the wire,
show that the cylindrically symmetric solution to this equation
outside the wire has the form

A = ẑ(a + b ln ρ),

where a and b are constants and ρ is the distance from the wire.

(c) To determine the constant b, integrate the differential equation
satisfied by A found in part 2a over the volume of a circular cylin-
der concentric with the wire, of radius r and of height h.

(d) From the A thus determined, compute the magnetic field B both
in magnitude and direction everywhere outside the wire.

(e) Verify this result by recasting the magnetostatic equation

∇ ×B =
4π

c
J

into an integral equation, Ampére’s law, around a closed loop, and
solving for B using symmetry considerations.

3. Consider two current-carrying loops made of wire of negligible thick-
ness, of radius a and b, respectively, parallel to each other, and sep-
arated from each other by a distance Z along a line perpendicular to
each other, as shown in the figure.

We are interested in the magnetic energy of interaction between two
currents, I1 and I2 flowing in loop a and b, respectively. We will only
consider the case were the separation distance Z is much greater than
the size of either loop, Z ≫ a, b.

(a) Show that the magnetic dipole moment of a current loop is µ =
I
c
S, where S is the directed area of the loop.
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Figure 1: Two parallel circular loops, of radius a and b, are located one above
the other and separated by a distance Z ≫ a, b, along a line perpendicular
to the plane of both loops.

(b) Show that the magnetic field produced by a magnetic dipole, far
from that dipole, is

B = −∇

(

µ · r
r3

)

,

where r is the position vector from the dipole to the field point.

(c) Calculate the interaction energy between dipole a and dipole b,
the two current loops, from the interaction of a magnetic dipole
with an external magnetic field. Give the answer in terms of the
given quantities I1, I2, a, b, and Z.

(d) What is the force between these two dipoles (current loops)? Is it
attractive or repulsive? Give a physical reason for the sign.

4. The Coulomb potential

G(r − r
′) =

1

|r − r′| , (1)

is also referred to as the Coulomb Green’s function because it satisfies
the equation

−∇2G(r − r
′) = 4πδ(r− r

′). (2)
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(a) Given the Fourier representation of a delta function

δ(x − x′) =
∫

∞

−∞

dk

2π
eik(x−x′), (3)

show that the three-dimensional delta function has the represen-
tation

δ3(r − r
′) =

∫

d3
k

(2π)3
eik·(r−r

′). (4)

(b) Then show from the differential equation (2) satisfied by G(r − r
′),

that the Fourier transform of the Green’s function, defined by

G(r − r
′) =

∫

d3
k

(2π)3
G̃(k)eik·(r−r

′), (5)

is simply

G̃(k) =
4π

k2
. (6)

(c) Now insert this result (6) into (5) and carry out the integral by
writing

1

k2
=

∫

∞

0
dλ e−λk2

. (7)

(Why is this true?) Carry out the integral over kx, ky, and kz by
completing the square and noting that

∫

∞

−∞

dk e−λk2

=

√

π

λ
. (8)

(d) Integrate over λ by changing variables to µ = 1/λ, and recognizing
that

∫

∞

0
dµ µs−1 e−bµ = Γ(s) b−s, (9)

where Γ is the gamma function. In particular, because Γ(1/2) =√
π, verify that (1) holds.
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