Physics 5573. Electrodynamics I. Second Examination Fall 2007

November 9, 2007

Instructions: This examination consists of three problems. If you get stuck on one part, assume a result and proceed onward. Show all your work. Do not hesitate to ask questions. GOOD LUCK!

1. A nonrelativistic particle of mass m and charge e moving in a constant magnetic field \mathbf{B} is described by the Hamiltonian:

$$
H=\frac{1}{2 m}\left(\mathbf{p}-\frac{e}{c} \mathbf{A}\right)^{2}, \quad \mathbf{A}=\frac{1}{2} \mathbf{B} \times \mathbf{r} .
$$

(a) Verify that $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$.
(b) From Hamilton's equations deduce the particle's velocity \mathbf{v}.
(c) From Hamilton's equations deduce the equation of motion for \mathbf{p}. Give $d \mathbf{p} / d t$ in terms of \mathbf{B}.
(d) Show that the latter is consistent with the Lorentz force law.
2. Consider an electromagnetic field described by the vector potential (a is a constant vector)

$$
\mathbf{A}(\mathbf{r})=\frac{\mathbf{a} \times \mathbf{r}}{r^{3}}, \quad r=|\mathbf{r}|
$$

while the scalar potential is zero.
(a) Calculate explicitly the magnetic field $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$ for all $r>0$.
(b) Show that \mathbf{B} can be written in the form

$$
\mathbf{B}=\boldsymbol{\nabla} \phi+\mathbf{a} \nabla^{2} \psi
$$

and identify the functions ϕ and ψ. What is $\nabla^{2} \psi$?
(c) From the equation of magnetostatics

$$
\boldsymbol{\nabla} \times \mathbf{B}=\frac{4 \pi}{c} \mathbf{J}
$$

determine the current density \mathbf{J} belonging to this magnetic field.
(d) Use this current to work out the magnetic dipole moment from

$$
\boldsymbol{\mu}=\frac{1}{2 c} \int(d \mathbf{r}) \mathbf{r} \times \mathbf{J} .
$$

[Hint: Integrate by parts.]
3. A charged particle of charge e and mass m subject to a harmonic restoring force and a damping force, under the influence of an external electric field $\mathbf{E}(t)$, is described by the equation

$$
\left(\frac{d^{2}}{d t^{2}}+\omega_{0}^{2}+\gamma \frac{d}{d t}\right) \mathbf{r}(t)=\frac{e}{m} \mathbf{E}(t)
$$

If we multiply this equation by $n e$, where n is the number density of such particles, we obtain a differential equation for the electric polarization \mathbf{P}.
(a) Find a solution of the above-referred-to equation in the form

$$
\mathbf{P}(t)=\int_{-\infty}^{\infty} d t^{\prime} \chi\left(t-t^{\prime}\right) \mathbf{E}\left(t^{\prime}\right)
$$

and write down the differential equation satisfied by $\chi\left(t-t^{\prime}\right)$. [Hint: the inhomogeneous term in this equation is proportional to a δ-function.]
(b) Solve this equation by requiring that $\chi\left(t-t^{\prime}\right)=0$ if $t-t^{\prime}<0$ (causality). Show that for $t-t^{\prime}>0$ the solution has the form

$$
\chi\left(t-t^{\prime}\right)=a e^{i \lambda_{+}\left(t-t^{\prime}\right)}+b e^{i \lambda_{-}\left(t-t^{\prime}\right)}
$$

where a and b are constants. What are the (constant) complex numbers $\lambda_{ \pm}$?
(c) Determine the constants a and b by requiring χ be continuous at $t-t^{\prime}=0$, but χ has a discontinuity in its first derivative at $t-t^{\prime}=0$ dictated by the equation of motion it satisfies. [Hint: Integrate the differential equation in time found in part 3a over a small interval in t including the point t^{\prime}.] Solve the resulting system of linear equations for a and b, and give an explicit form for $\chi\left(t-t^{\prime}\right)$.
(d) Alternatively, recall that in class we solved this problem by a Fourier transform, leading to a dielectric constant

$$
\varepsilon(\omega)=1+4 \pi \chi(\omega)
$$

Explicitly, we found

$$
\varepsilon(\omega)=1+\frac{\omega_{p}^{2}}{\omega_{0}^{2}-\omega^{2}-i \gamma \omega}, \quad \omega_{p}^{2}=\frac{4 \pi n e^{2}}{m} .
$$

To connect this to the above, we simply have to carry out a Fourier transform,

$$
\chi\left(t-t^{\prime}\right)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \chi(\omega) e^{-i \omega\left(t-t^{\prime}\right)}
$$

Show that indeed, $\chi\left(t-t^{\prime}\right)=0$ for $t<t^{\prime}$, but that for $t>t^{\prime}$ you recover the same result found in part 3c. [Hint: Where are the poles in $\chi(\omega) ?]$

