Physics 5573. Electrodynamics I. First Examination Fall 2007

October 16, 2007

Instructions: This examination consists of three problems. If you get stuck on one part, assume a result and proceed onward. Show all your work. Do not hesitate to ask questions. GOOD LUCK!

1. Consider a configuration of static point charges as shown in the figure.
(a) Calculate the total charge, the electric dipole moment, and the electric quadrupole moment, defined by the dyadic

$$
\mathbf{q}=\int(d \mathbf{r}) \rho(\mathbf{r})\left[3 \mathbf{r} \mathbf{r}-\mathbf{1} r^{2}\right],
$$

where ρ is the charge density for this configuration of charges. In particular, compute all 9 components of \mathbf{q}. Is there a relationship between the components?

(b) Now suppose the system of charges is exposed to a static electric field, which varies only slightly over the system of charges. That is, let a be very small compared to the typical scale of variation of \mathbf{E}. Compute the force exerted on the system of charges by this electric field in terms of the total charge, the dipole moment, and the quadrupole moment.
(c) A general formula for the force exerted on an electric quadrupole by a field \mathbf{E} is

$$
\mathbf{F}=-\nabla U, \quad U=-\frac{1}{6} \nabla \cdot \mathbf{q} \cdot \mathbf{E}
$$

Show that the result found in part 1 b agrees with this formula. [Hint, use the Maxwell's equations appropriate to electrostatics.]
2. The stress dyadic is

$$
\mathbf{T}=\mathbf{1} \frac{E^{2}+B^{2}}{8 \pi}-\frac{\mathbf{E E}+\mathbf{B B}}{4 \pi}
$$

(a) By using Maxwell's equations, prove directly that

$$
\boldsymbol{\nabla} \cdot \mathbf{T}=-\mathbf{f}-\frac{\partial}{\partial t} \mathbf{G}
$$

and determine the form of the force density \mathbf{f} and the momentum density of the electromagnetic field \mathbf{G}.
(b) Now consider two point charges of strength e and q respectively, fixed in position, and separated by a distance R. For concreteness, assume e is located at the origin, and q at $z=R$. What is the electric field at any point in space?
(c) For the static situation, show that we can calculate the force on charge q from the surface integral

$$
\mathbf{F}_{q}=-\oint_{S} d \mathbf{S} \cdot \mathbf{T}
$$

where S is an arbitrary volume entirely containing the charge q but not e. By choosing S to be a very small sphere centered on q, use this formula to calculate all components of \mathbf{F}. Is the result as expected? [Hint: In integrating over solid angles, show that

$$
\left.\oint d \Omega \cos \theta=0, \quad \oint d \Omega \cos ^{2} \theta=\frac{4 \pi}{3} .\right]
$$

3. An idealized plane wave propagating in the z direction can be described by the following electric and magnetic fields,

$$
\begin{aligned}
& \mathbf{E}=\hat{\mathbf{x}} \operatorname{Re} E_{0} e^{i(k z-\omega t)} \\
& \mathbf{B}=\hat{\mathbf{y}} \operatorname{Re} B_{0} e^{i(k z-\omega t)}
\end{aligned}
$$

in terms of complex amplitudes E_{0} and B_{0}.
(a) From Maxwell's equations, what can you say about the relation between E_{0} and B_{0}, and between k and ω ?
(b) Calculate the momentum per unit area carried by this electromagnetic field. [Recall Problem 2a.] Average this over one cycle to get a time-independent result.
(c) Now imagine that this wave is incident upon a perfectly conducting plate perpendicular to the z axis. Describe the reflected wave in a form similar to that given above.
(d) Using the result of part 3 b what is the momentum transfered to the plate as a result of the reflection process?

