Electrodynamics I
 First Assignment Due Friday, February 5

January 16, 2016

1. Use the three-dimensional Levi-Civita symbol, $\epsilon_{i j k}$, which has the properties of being totally antisymmetric in all three indices,

$$
\epsilon_{i j k}=\epsilon_{j k i}=\epsilon_{k i j}=-\epsilon_{j i k}=-\epsilon_{k j i}=-\epsilon_{i k j},
$$

and is normalized to unity,

$$
\epsilon_{123}=+1
$$

to define the cross product in terms of the Cartesian components of vectors:

$$
\mathbf{A}=\mathbf{B} \times \mathbf{C} \Leftrightarrow A_{i}=\epsilon_{i j k} B_{j} C_{k},
$$

which uses the summation convention for repeated indices, for example,

$$
A_{i} B_{i}=\sum_{i=1}^{3} A_{i} B_{i}=\mathbf{A} \cdot \mathbf{B}
$$

Prove the identity

$$
\epsilon_{i j k} \epsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l},
$$

where $\delta_{i j}$ is the Kronecker delta symbol,

$$
\delta_{i j}= \begin{cases}1, & i=j, \\ 0, & i \neq j\end{cases}
$$

Show this is equivalent to the familiar identity

$$
\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})
$$

provided \mathbf{A}, \mathbf{B}, and \mathbf{C} are commuting vectors.
2. Show that the following functions represent the delta function in one dimension by showing that

$$
\delta_{\epsilon}(x \neq 0) \rightarrow 0 \quad \text { as } \quad \epsilon \rightarrow 0+,
$$

and

$$
\int_{-\infty}^{\infty} d x \delta_{\epsilon}(x)=1
$$

(a)

$$
\delta_{\epsilon}(x)=\frac{1}{\sqrt{\pi \epsilon}} e^{-x^{2} / \epsilon},
$$

(b)

$$
\delta_{\epsilon}(x)=\frac{1}{\pi} \frac{\epsilon}{x^{2}+\epsilon^{2}},
$$

(c)

$$
\delta_{\epsilon}(x)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x-|k| \epsilon}
$$

Problems in Classical Electrodynamics, Chapter 1: 2, 4, 5; Chapter 2: 1, 2; Chapter 3: 1, 2.

