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Waveguides and Equivalent Transmission Lines

A waveguide is a device for transferring electromagnetic energy from one point
to another without appreciable loss. In its simplest form it consists of a hollow
metallic tube of rectangular or circular cross section, within which electromag-
netic waves can propagate. The two conductor transmission line discussed in
the Appendix is a particular type of waveguide, with special properties. The
simple physical concept implied by these examples may be extended to in-
clude any region within which one-dimensional propagation of electromagnetic
waves can occur. It is the purpose of this chapter to establish the theory of
various types of simple waveguides, expressed in the general transmission-line
nomenclature developed in the Appendix.
This chapter will be devoted to the theory of uniform waveguides – metallic

tubes which have the same cross-section in any plane perpendicular to the
axis of the guide. Initially, the simplifying assumption will be made that the
metallic walls of the waveguide are perfectly conducting. Since the field is
then entirely confined to the interior of the waveguide, the guide is completely
described by specifying the curve C which defines a cross-section σ of the inner
waveguide surface S. The curve C may be a simple closed curve, corresponding
to a hollow waveguide, or two unconnected curves, as in a coaxial line.

4.1 Transmission-Line Formulation

We first consider the problem of finding the possible fields that can exist within
a waveguide, in the absence of any impressed currents. This is equivalent to
seeking the solutions of the Maxwell equations

∇×E = ikζH , (4.1a)

∇×H = −ikηE , (4.1b)

where we have defined [SI units]
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k = ω
√
εµ =

ω

c
, (4.2a)

c being the speed of light in the medium inside the guide, and introduced the
abbreviations

ζ =

√

µ

ε
, η =

√

ε

µ
= ζ−1 . (4.2b)

These equations are to be solved subject to the boundary condition

n×E = 0 on S , (4.3)

where n̂ is the unit normal to the surface S of the guide. Recall that the other
two Maxwell equations, in charge-free regions,

∇ ·D = 0 , ∇ ·B = 0 , (4.4)

are contained within these equations, as is the boundary condition n ·B =
0. The medium filling the waveguide is assumed to be uniform and non-
dissipative. In view of the cylindrical nature of the boundary surface, it is
convenient to separate the field equations into components parallel to the
axis of the guide, which we take as the z axis, and components transverse to
the guide axis. This we achieve by scalar and vector multiplication with e, a
unit vector in the z direction, thus obtaining

∇ · e×E = −ikζHz , (4.5a)

∇ · e×H = ikηEz , (4.5b)

and

∇Ez −
∂

∂z
E = ikζe×H , (4.6a)

∇Hz −
∂

∂z
H = −ikηe×E . (4.6b)

On substituting (4.5b) [(4.5a)] into (4.6a) [(4.6b)], one recasts the latter into
the form

∂

∂z
E = ikζ

(

1+
1

k2
∇∇

)

·H× e , (4.7a)

∂

∂z
H = ikη

(

1+
1

k2
∇∇

)

· e×E , (4.7b)

in which 1 denotes the unit dyadic. This set of equations is fully equivalent
to the original field equations, for it still contains (4.5a), (4.5b) as its z com-
ponent. The transverse components of (4.7a), (4.7b) constitute a system of
differential equations to determine the transverse components of the electric
and magnetic fields. These equations are in transmission line form, but with
the series impedance and the shunt admittance per unit length appearing as
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dyadic differential operators. The subsequent analysis has for its aim the re-
placement of the operator transmission line equations by an infinite set of
ordinary differential equations. This is performed by successively suppressing
the vectorial aspect of the equations and the explicit dependence on x and y,
the coordinates in a transverse plane.
Any two-component vector field, such as the transverse part of the electric

field E⊥, can be represented as a linear combination of two vectors derived
from a potential function and a stream function, respectively. Thus

E⊥ = −∇⊥V
′ + e×∇V ′′ , (4.8)

where V ′(r) and V ′′(r) are two arbitrary scalar functions and ∇⊥ indicates
the transverse part of the gradient operator. In a similar way, we write

H⊥ = −e×∇I ′ −∇⊥I
′′ , (4.9a)

or
H× e = −∇⊥I

′ + e×∇I ′′ , (4.9b)

with I ′(r) and I ′′(r) two new arbitrary scalar functions. This general repre-
sentation can be obtained by constructing the two-component characteristic
vectors (eigenvectors) of the operator 1 + 1

k2 ∇∇. Such vectors must satisfy
the eigenvector equation in the form

∇⊥∇ ·A⊥ = γA⊥ . (4.10)

Hence, either ∇ · A⊥ = 0 and γ = 0, implying that A⊥ is the curl of a
vector directed along the z axis; or ∇ · A⊥ 6= 0, and A⊥ is the gradient
of a scalar function. The most general two-component vector A⊥ is a linear
combination of these two types, and e×A is still of the same form, as it must
be. In consequence of these observations, the substitution of the representation
(4.8), (4.9a) into the differential equations (4.7a), (4.7b) will produce a set of
equations in which every term has one or the other of these forms. This yields
a system of four scalar differential equations, which are grouped into two pairs,

∂

∂z
I ′ = ikηV ′ ,

∂

∂z
V ′ = ikζ

(

1 +
1

k2
∇2

⊥

)

I ′ , (4.11a)

∂

∂z
I ′′ = ikη

(

1 +
1

k2
∇2

⊥

)

V ′′ ,
∂

∂z
V ′′ = ikζI ′′ , (4.11b)

where ∇2
⊥ is the Laplacian for the transverse coordinates x and y. (Any con-

stant annihilated by ∇⊥ is excluded because it would not contribute to the
electric and magnetic fields.) The longitudinal field components may now be
written as

ikηEz = ∇2
⊥I

′ , (4.12a)

ikζHz = ∇2
⊥V

′′ . (4.12b)
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The net effect of these operations is the decomposition of the field into
two independent parts derived, respectively, from the scalar functions V ′, I ′,
and V ′′, I ′′. Note that the first type of field in general possesses a longitudi-
nal component of electric field, but no longitudinal magnetic field, while the
situation is reversed with the second type of field. For this reason, the various
field configurations derived from V ′ and I ′ are designated as E modes, while
those obtained from V ′′ and I ′′ are called H modes; the nomenclature in each
case specifies the non-vanishing z component of the field.1

The scalar quantities involved in (4.11a), (4.11b) are functions of x, y, and
z. The final step in the reduction to one-dimensional equations consists in
representing the x, y dependence of these functions by an expansion in the
complete set of functions forming the eigenfunctions of ∇2

⊥. For the E mode,
let these functions be ϕa(x, y), satisfying

(∇2
⊥ + γ

′2
a )ϕa(x, y) = 0 , (4.13)

and subject to boundary conditions, which we shall shortly determine. On
substituting the expansion

V ′(x, y, z) =
∑

a

ϕa(x, y)V
′
a(z) , (4.14a)

I ′(x, y, z) =
∑

a

ϕa(x, y)I
′
a(z) , (4.14b)

into (4.11a), we immediately obtain the transmission line equations

d

dz
I ′a(z) = ikηV

′
a(z) , (4.15a)

d

dz
V ′
a(z) = ikζ

(

1− γ′2a
k2

)

I ′a(z) . (4.15b)

In a similar way, we introduce another set of eigenfunctions for ∇2
⊥:

(∇2
⊥ + γ

′′2
a )ψa(x, y) = 0 . (4.16)

and expand the H mode quantities in terms of them:

V ′′(x, y, z) =
∑

a

ψa(x, y)V
′′
a (z) , (4.17a)

I ′′(x, y, z) =
∑

a

ψa(x, y)I
′′
a (z) . (4.17b)

The corresponding differential equations are

1 A more common terminology for E modes are TM modes, meaning “transverse
magnetic”; and for H modes, TE modes, for “transverse electric.” Still another
notation is ⊥ for “perpendicular,” referring to H modes, and ‖ for “parallel,”
referring to E modes.
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d

dz
I ′′a (z) = ikη

(

1− γ′′2a
k2

)

V ′′
a (z) , (4.18a)

d

dz
V ′′
a (z) = ikζI

′′
a (z) . (4.18b)

The boundary conditions on the electric field require that

Ez = 0, Es = 0 on S , (4.19)

where Es is the component of the electric field tangential to the boundary
curve C. These conditions imply that

∇2
⊥I

′ = 0,
∂

∂s
V ′ =

∂

∂n
V ′′ = 0 on S , (4.20)

where ∂
∂n is the derivative normal to the surface of the waveguide S, and

∂
∂s is the circumferential derivative, tangential to the curve C. Since these
equations must be satisfied for all z, they impose the following requirements
on the functions ϕa and ψa:

γ′2a ϕa = 0 ,
∂

∂s
ϕa = 0 ,

∂

∂n
ψa = 0 on C . (4.21)

If we temporarily exclude the possibility γ ′a = 0, the second E mode boundary
condition is automatically included in the first statement, that ϕa = 0 on the
boundary curve C. Hence, E modes are derived from scalar functions defined
by

(

∇2
⊥ + γ

′2
a

)

ϕa(x, y) = 0 , (4.22a)

ϕa(x, y) = 0 on C , (4.22b)

while H modes are derived from functions satisfying

(

∇2
⊥ + γ

′′2
a

)

ψa(x, y) = 0 , (4.23a)

∂

∂n
ψa(x, y) = 0 on C , (4.23b)

These equations are often encountered in physics. For example, they describe
the vibrations of a membrane bounded by the curve C, which is either rigidly
clamped at the boundary [(4.22b)], or completely free [(4.23b)]. Mathemat-
ically, these are referred to a Dirichlet and Neumann boundary conditions,
respectively. Each equation defines an infinite set of eigenfunctions and eigen-
values ϕa, γ

′
a and ψa, γ

′′
a . Hence, a waveguide possesses a two-fold infinity of

possible modes of electromagnetic oscillation, each completely characterized
by one of these scalar functions and its attendant eigenvalue.
We shall now show that the discarded possibility, γ ′a = 0, cannot occur

for hollow waveguides, but does correspond to an actual field configuration in
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two conductor lines, being in fact the T mode discussed in the Appendix. The
scalar function ϕ associated with γ ′a = 0 satisfies Laplace’s equation

∇2
⊥ϕ(x, y) = 0 , (4.24)

and is restricted by the second boundary condition, ∂
∂sϕ(x, y) = 0 on C, or

ϕ(x, y) = constant on C . (4.25)

Since ϕ satisfies Laplace’s equation, we deduce that
∫

C

dsϕ
∂

∂n
ϕ =

∫

σ

dσ (∇⊥ϕ)
2 , (4.26)

in which the line integral is taken around the curve C and the surface integral
is extended over the guide cross-section σ. For a hollow waveguide with a
cross-section bounded by a single closed curve on which

ϕ = constant = ϕ0 , (4.27)

we conclude
∫

C

dsϕ
∂

∂n
ϕ = ϕ0

∫

C

ds
∂

∂n
ϕ = ϕ0

∫

σ

dσ∇2
⊥ϕ = 0 , (4.28)

and therefore from (4.26) ∇⊥ϕ = 0 everywhere within the guide, which im-
plies that all field components vanish, effectively denying the existence of such
a mode. If, however, the contour C consists of two unconnected curves C1 and
C2, as in a coaxial line, the boundary condition,

∂
∂sϕ = 0 on C, requires that

ϕ be constant on each contour

ϕ = ϕ1 on C1, ϕ = ϕ2 on C2 , (4.29)

but does not demand that ϕ1 = ϕ2. Hence
∫

C

dsϕ
∂

∂n
ϕ = ϕ1

∫

C1

ds
∂

∂n
ϕ+ ϕ2

∫

C2

ds
∂

∂n
ϕ = (ϕ1 − ϕ2)

∫

C1

ds
∂

∂n
ϕ ,

(4.30)
since

0 =

∫

C

ds
∂

∂n
ϕ =

∫

C1

ds
∂

∂n
ϕ+

∫

C2

ds
∂

∂n
ϕ , (4.31)

and the preceding proof fails if ϕ1 6= ϕ2. The identification with the T mode
is completed by noting [(4.12a)] that Ez = Hz = 0.
The preceding discussion has shown that the electromagnetic field within

a waveguide consists of a linear superposition of an infinite number of com-
pletely independent field configurations, or modes. Each mode has a character-
istic field pattern across any section of the guide, and the amplitude variations
of the fields along the guide are specified by “currents” and “voltages” which
satisfy transmission-line equations. We shall summarize our results by collect-
ing together the fundamental equations describing a typical E mode and H
mode (omitting distinguishing indices for simplicity).
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• E mode:

E⊥ = −∇⊥ϕ(x, y)V (z) , (4.32a)

H⊥ = −e×∇ϕ(x, y)I(z) , (4.32b)

Ez = iζ
γ2

k
ϕ(x, y)I(z) , (4.32c)

Hz = 0 , (4.32d)

(∇2
⊥ + γ

2)ϕ(x, y) = 0, ϕ(x, y) = 0 on C , (4.32e)

d

dz
I(z) = ikηV (z) , (4.32f)

d

dz
V (z) = ikζ

(

1− γ2

k2

)

I(z) . (4.32g)

• H mode:

E⊥ = e×∇ψ(x, y)V (z) , (4.33a)

H⊥ = −∇⊥ψ(x, y)I(z) , (4.33b)

Ez = 0 , (4.33c)

Hz = iη
γ2

k
ψ(x, y)V (z) , (4.33d)

(∇2
⊥ + γ

2)ψ(x, y) = 0,
∂

∂n
ψ(x, y) = 0 on C , (4.33e)

d

dz
I(z) = ikη

(

1− γ2

k2

)

V (z) , (4.33f)

d

dz
V (z) = ikζI(z) . (4.33g)

The T mode in a two-conductor line is to be regarded as an E mode with
γ = 0, and the boundary condition replaced by ∂

∂sϕ = 0. It may also be
considered an H mode with γ = 0.
The transmission line equations for the two mode types, written as

• E mode:

d

dz
I(z) = iωεV (z) , (4.34a)

d

dz
V (z) =

(

iωµ+
γ2

iωε

)

I(z) , (4.34b)

• H mode:

d

dz
I(z) =

(

iωε+
γ2

iωµ

)

V (z) , (4.35a)

d

dz
V (z) = iωµI(z) , (4.35b)
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are immediately recognized as the equations of the E amd H type for the
distributed parameter circuits discussed in the Appendix. The E mode equiv-
alent transmission line has distributed parameters per unit length specified by
a shunt capacitance C = ε, and series inductance L = µ, and a series capaci-
tance C ′ = ε/γ2. The H mode line distributed parameters are a series induc-
tance L = µ, a shunt capacitance C = ε, and a shunt inductance L′′ = µ/γ2,
all per unit length.2 Thus, if we consider a plane wave, I ∝ eiκz, with V = ZI,
the propagation constant κ and characteristic impedance Z = 1/Y associated
with the two types of lines are

• E mode:

κ =
√

k2 − γ2 , (4.36a)

Z = ζ
κ

k
, (4.36b)

• H mode:

κ =
√

k2 − γ2 , (4.36c)

Y = η
κ

k
. (4.36d)

We may again remark on the filter property of these transmission lines,
which is discussed in the Appendix. Actual transport of energy along a waveg-
uide in a particular mode can only occur if the wave number k exceeds the
quantity γ associated with the mode. The eigenvalue γ is therefore referred
to as the cutoff or critical wavenumber for the mode. Other quantities related
to the cutoff wavenumber are the cutoff wavelength,

λc =
2π

γ
, (4.37)

and the cutoff (angular) frequency

ωc = γ(εµ)−1/2 . (4.38)

When the frequency exceeds the cutoff frequency for a particular mode, the
wave motion on the transmission line, indicating the field variation along the
guide, is described by an associated wavelength

λg =
2π

κ
, (4.39)

which is called the guide wavelength. The relation between the guide wave-
length, intrinsic wavelength, and cutoff wavelength for a particular mode is,
according to (4.36a),

2 The vacuum value of the universal series inductance and shunt capacitance is
L0 = µ0 = 1.257µH/m and C0 = ε0 = 8.854 pF/m, respectively.
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1

λg
=

√

1

λ2
− 1

λ2
c

, (4.40a)

or

λg =
λ

√

1−
(

λ
λc

)2
. (4.40b)

Thus, at cutoff (λ = λc), the guide wavelength is infinite and becomes imagi-
nary at longer wavelengths, indicating attenuation, while at very short wave-
lengths (λ ¿ λc), the guide wavelength is substantially equal to the in-
trinsic wavelength of the guide medium. Correspondingly, the characteristic
impedance for a E (H) mode is zero (infinite) at the cutoff frequency and is
imaginary at lower frequencies in the manner typical of a capacitance (induc-
tance). The characteristic impedance approaches the intrinsic impedance of
the medium

√

µ/ε for very short wavelengths. For ε = ε0, µ = µ0, the latter
reduces to the impedance of free space,

Z0 =
1

Y0

=

√

µ0

ε0
= 376.6Ω . (4.41)

The existence of a cutoff frequency for each mode involves the implicit
statement that γ2 is real and positive; γ is positive by definition. A proof is
easily supplied for both E and H modes with the aid of the identity

∫

C

ds f∗
∂

∂n
f =

∫

σ

dσ |∇⊥f |2 − γ2

∫

σ

dσ |f |2 , (4.42)

where f stands for either an E-mode function ϕ or an H-mode function ψ. In
either event, the line integral vanishes and

γ2 =

∫

σ
dσ |∇⊥f |2
∫

σ
dσ |f |2 , (4.43)

which establishes the theorem. It may be noted that we have admitted, in all
generality, that f may be complex. However, with the knowledge that γ2 is
real, it is evident from the form of the defining wave equation and boundary
conditions that real mode functions can always be chosen.
The impedance (admittance) at a given point on the transmission line

describing a particular mode,

Z(z) =
1

Y (z)
=
V (z)

I(z)
, (4.44)

determines the ratio of the transverse electric and magnetic field components
at that point. According to (4.32a) and (4.32b), an E mode magnetic field is
related to the transverse electric field by

E mode: H = Y (z)e×E , (4.45a)
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which is a general vector relation since it correctly predicts that Hz = 0. The
analogous H-mode relation is

H mode: E = −Z(z)e×H , (4.45b)

For either type of mode, the connections between the rectangular components
of the transverse fields are

Ex = Z(z)Hy, Ey = −Z(z)Hx , (4.46a)

Hx = −Y (z)Ey, Hy = Y (z)Ex . (4.46b)

In the particular case of a progressive wave propagating (or attenuating) in
the positive z direction, the impedance at every point equals the characteristic
impedance of the line, Z(z) = Z. The analogous relation Z(z) = −Z describes
a wave progressing in the negative direction.

4.2 Hertz Vectors

The reduction of the vector field equations to a set of transmission-line equa-
tions, as set forth in Sec. 4.1, requires four scalar functions of z for its proper
presentation. However, it is often convenient to eliminate two of these func-
tions and exhibit the general electromagnetic field as derived from two scalar
functions of position, which appear in the role of single component Hertz vec-
tors. On eliminating the functions V ′(r) amd I ′′(r) with the aid of (4.15a)
and (4.18b), the transverse components of E and H, (4.8), (4.9a), become

E⊥ =
i

k
ζ∇⊥

∂

∂z
I ′ + e×∇V ′′ , (4.47a)

H⊥ = −e×∇I ′ +
i

k
η∇⊥

∂

∂z
V ′′ , (4.47b)

which can be combined with the expressions for the longitudinal field compo-
nents, (4.12a), (4.12b), into general vector equations

E = ∇× (∇×Π′) + ikζ∇×Π′′ , (4.48a)

H = −ikη∇×Π′ +∇× (∇×Π′′) , (4.48b)

The electric and magnetic Hertz vectors that appear in this formulation only
posses z components, which are given by

Π′
z =

i

k
ζI ′ , Π′′

z =
i

k
ηV ′′ . (4.49)

The Maxwell equations are completely satisfied if the Hertz vector components
satisfy the scalar wave equation:

(∇2 + k2)Π′
z = 0 , (∇2 + k2)Π′′

z = 0 , (4.50)
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which is verified by eliminating V ′ and I ′′ from (4.11a), (4.11b). For a partic-
ular E mode, the scalar function I ′ is proportional to the longitudinal electric
field and

E mode: Π′
z =

1

γ2
Ez . (4.51a)

Similarly,

H mode: Π′′
z =

1

γ2
Hz . (4.51b)

Hence the field structure of an E or H mode can be completely derived from
the corresponding longitudinal field component.

4.3 Orthonormality Relations

We turn to an examination of the fundamental physical quantities associated
with the electromagnetic field in a waveguide – energy density and energy
flux. In the course of the investigation we shall also derive certain orthogonal
properties possessed by the electric and magnetic field components of the
various modes. Inasmuch as these relations are based on similar orthogonal
properties of the scalar functions ϕa and ψa, we preface the discussion by a
derivation of the necessary theorems. Let us consider two E-mode functions
ϕa and ϕb, and construct the identity

∫

C

dsϕa
∂

∂n
ϕb =

∫

σ

dσ∇⊥ϕa ·∇⊥ϕb − γ′2b
∫

σ

dσ ϕaϕb . (4.52)

If we temporarily exclude the T mode of a two-conductor guide, the line
integral vanishes by virtue of the boundary condition. On interchanging ϕa
and ϕb, and subtracting the resulting equation, we obtain

(γ′2a − γ′2b )
∫

σ

dσ ϕaϕb = 0 , (4.53)

which demonstrates the orthogonality of two mode functions with different
eigenvalues. In consequence of the vanishing of the surface integral in (4.52),
we may write this orthogonal relation as

∫

σ

dσ∇⊥ϕa ·∇⊥ϕb = 0 , γ′a 6= γ′b . (4.54)

If more than one linearly independent mode function is associated with a
particular eigenvalue – a situation which is referred to as “degeneracy” –
no guarantee of orthogonality for these eigenfunctions is supplied by (4.53).
However, a linear combination of degenerate eigenfunctions is again an eigen-
function, and such linear combinations can always be arranged to have the
orthogonal property. In this sense, the orthogonality theorem (4.54) is valid
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for all pairs of different eigenfunctions. The theorem is also valid for the T
mode of a two-conductor system. To prove this, we return to (4.52) and choose
the mode a an an ordinary E mode (ϕa = 0 on C), and the mode b as the T
mode (γ′b = 0); the desired relation follows immediately. Note, however, that
in this situation orthogonality in the form

∫

dσ ϕaϕb = 0 is not obtained.
Finally, then, the orthogonal relation, applicable to all E modes, is

∫

dσ∇⊥ϕa ·∇⊥ϕb = δab , (4.55)

which also contains a convention regarding the normalization of the E-mode
functions:

∫

dσ (∇⊥ϕ)
2 = 1 , (4.56)

a convenient choice for the subsequent discussion. With the exception of the
T mode, the normalization condition can also be written

γ′2a

∫

dσ ϕ2
a = 1 . (4.57)

The corresponding derivation for H modes proceeds on identical lines, with
results expressed by

∫

dσ∇⊥ψa ·∇⊥ψb = δab , (4.58)

which contains the normalization convention
∫

dσ (∇⊥ψa)
2 = γ′′2a

∫

dσ ψ2
a = 1 . (4.59)

As we shall now see, no statement of orthogonality between E and H modes
is required.

4.4 Energy Density and Flux

The energy quantities with which we shall be concerned are the linear energy
densities (that is, the energy densities per unit length) obtained by integrat-
ing the volume densities across a section of the guide. It is convenient to
consider separately the linear densities associated with the various electric
and magnetic components of the field. Thus the linear electric energy density
connected with the longitudinal electric field is

UEz
=
ε

2

∫

dσ
[

Re
(

Eze
−iωt

)]2
=
ε

4

∫

dσ |Ez|2 , (4.60)

where the oscillating terms are omitted due to time-averaging. On inserting
the general superposition of individual E-mode fields [cf. (4.32c)],
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Ez =
iζ

k

∑

a

γ′2a ϕa(x, y)I
′
a(z) , (4.61)

we find

UEz
=
ε

4

ζ2

k2

∑

a

γ′2a |I ′a(z)|
2
, (4.62)

in which the orthogonality and normalization of the E-mode functions has
been used. The orthogonality of the longitudinal electric fields possessed by
different E modes is thus a trivial consequence of the corresponding property
of the scalar functions ϕa. The longitudinal electric field energy density can
also be written

UEz
=
1

4

∑

a

1

ω2C ′
a

|I ′a(z)|
2
, (4.63)

by introducing the distributed series capacitance, C ′
a = ε/γ′2a , associated with

the transmission line that describes the ath E mode. In a similar way, the
linear energy density

UHz
=
µ

4

∫

dσ |Hz|2 (4.64)

derived from the longitudinal magnetic field [(4.33d)]

Hz =
iη

k

∑

a

γ′′2a ψa(x, y)V
′′
z (z) (4.65)

reads

UHz
=
µ

4

η2

k2

∑

a

γ′′2a |V ′′
a (z)|

2
, (4.66)

in consequence of the normalization condition for ψa and the orthogonality
of the longitudinal magnetic fields of different H modes. The insertion of the
distributed shunt inductance characteristic of the ath H-mode transmission
line, L′′

a = µ/γ′′2a , transforms this energy density expression into

UHz
=
1

4

∑

a

1

ω2L′′
a

|V ′′
a (z)|

2
. (4.67)

To evaluate the linear energy density associated with the transverse electric
field

UE⊥
=
ε

4

∫

dσ |E⊥|2 , (4.68)

it is convenient to first insert the general representation (4.8), thus obtaining

UE⊥
=
ε

4

[

∫

dσ |∇⊥V
′|2 +

∫

dσ |e×∇V ′′|2

− 2Re
∫

dσ∇⊥V
′ · e×∇V ′′∗

]

. (4.69)
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The last terms of this expression, representing the mutual energy of the E and
H modes, may be proved to vanish by the following sequence of equations:

∫

σ

dσ∇⊥V
′ · e×∇V ′′∗ = −

∫

σ

dσ∇⊥V
′′∗ · e×∇V ′

= −
∫

σ

dσ∇⊥ · (V ′′∗e×∇V ′)

= −
∫

C

ds V ′′∗n · e×∇V ′ =

∫

C

ds V ′′∗ ∂

∂s
V ′ = 0 ,

(4.70)

in which the last step involves the generally valid boundary condition, ∂
∂sV

′ =
0 on C, see (4.21). (A proof employing the boundary condition V ′ = 0 on C
would not apply to the T mode.) It has thus been shown that the transverse
electric field of an E mode is orthogonal to the transverse electric field of an
H mode. For the transverse electric field energy density of the E mode, we
have from (4.14a)

ε

4

∫

dσ |∇⊥V
′|2 = ε

4

∑

a

|V ′
a(z)|2 , (4.71)

as an immediate consequence of the orthonormality condition (4.55), which
demonstrates the orthogonality of the transverse electric fields of different E
modes. Similarly, from (4.17a) the transverse electric field energy density of
the H modes:

ε

4

∫

dσ |e×∇V ′′|2 = ε

4

∫

dσ |∇⊥V
′′|2 = ε

4

∑

a

|V ′′(z)|2 , (4.72)

is a sum of individual mode contributions, indicating the orthogonality of the
transverse electric fields of different H modes. Finally, the transverse electric
field energy density is

UE⊥
=
1

4

∑

a

C|V ′
a(z)|2 +

1

4

∑

a

C|V ′′
a (z)|2 , (4.73)

where C = ε is the distributed shunt capacitance common to all E- and H-
mode transmission lines.
The discussion of the transverse magnetic field energy density,

UH⊥
=
µ

4

∫

dσ |H⊥|2 =
µ

4

∫

dσ |H× e|2 , (4.74)

is precisely analogous and requires no detailed treatment, for in virtue of (4.8)
and (4.9a) it is merely necessary to make the substitutions V ′ → I ′, V ′′ → I ′′

(and ε → µ, of course) to obtain the desired result. The boundary condition
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upon which the analogue of (4.70) depends now reads ∂
∂sI

′ = 0 on C, which
is again an expression of the E-mode boundary condition. Hence

UH⊥
=
1

4

∑

a

L|I ′a(z)|2 +
1

4

∑

a

L|I ′′a (z)|2 , (4.75)

where L = µ is the distributed series inductance characteristic of all mode
transmission lines. The orthogonality of the transverse magnetic fields associ-
ated with two different modes, which is contained in the result, may also be
derived from the previously established transverse electric field orthogonal-
ity with the aid of the relations between transverse field components that is
exhibited in (4.45a), (4.45b).
The complex power flowing along the waveguide is obtained from the lon-

gitudinal component of the complex Poynting vector by integration across a
guide section:

P =
1

2

∫

dσE×H∗ · e = 1
2

∫

dσE · (H× e)∗ , (4.76)

whence from (4.8) and (4.9b)

P =
1

2

[

∫

dσ∇⊥V
′ ·∇⊥I

′∗ +

∫

dσ e×∇V ′′ · e×∇I ′′∗

−
∫

dσ∇V ′ · e×∇I ′′∗ −
∫

dσ e×∇V ′′ ·∇I ′∗

]

=
1

2

∑

a

V ′
a(z)I

′
a(z)

∗ +
1

2

∑

a

V ′′
a (z)I

′′
a (z)

∗ , (4.77)

which uses (4.14a), (4.14b) and (4.17a), (4.17b), and the analogue of (4.70).
Hence the complex power flow is a sum of individual mode contributions,
each having the proper transmission-line form; it will now be evident that the
normalization conditions (4.56) and (4.59) were adopted in anticipation of
this result. The orthogonality that is implied by expression (4.77) is a simple
consequence of the orthogonality property of transverse electric fields, since
H× e for an individual mode is proportional to the corresponding transverse
electric field.
It will have been noticed that the linear energy densities associated with

the different field components are in full agreement with the energies stored
per unit length in the various elements of the distributed parameter circuits.
Thus the E- and H-type circuits give a complete pictorial description of the
electromagnetic properties of E and H modes in the usual sense: Capacitance
and inductance represents electric and magnetic energy; series elements are
associated with longitudinal electric and transverse magnetic fields (longitudi-
nal displacement and conduction currents); shunt elements describe transverse
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electric and longitudinal magnetic fields (transverse displacement and conduc-
tion currents). The air of precise definition attached to the line parameters,
however, is spurious. We are at liberty to multiply a transmission line voltage
by a constant and divide the associated current by the same constant with-
out violating the requirement that the complex power have the transmission
line form. Thus, let a mode voltage and current be replaced by N−1/2V (z)
and N1/2I(z), respectively, implying that the new voltage and current are
obtained from the old definitions through multiplication by N 1/2 and N−1/2,
respectively. In order the preserve the form of the energy expressions, the
inductance parameters must be multiplied by N , and the capacitance param-
eters divided by N . It follows from these statements that the characteristic
impedance must by multiplied by N , in agreement with its significance as
a voltage-current ratio. The propagation constant is unaffected by this al-
teration, of course. We may conclude that one of the basic quantities that
specifies the transmission line, characteristic impedance, remains essentially
undefined by any considerations thus far introduced. The same situation arose
in the field analysis of the two-conductor transmission line and it was shown
that a natural definition for the characteristic impedance could be obtained
by ascribing the customary physical meaning to either the current or voltage,
the same result being obtained in either event. This somewhat artificial pro-
cedure was employed in order to emphasize the rather different character of
waveguide fields for, as we shall now show, a precise definition of character-
istic impedance can be obtained by ascribing a physical significance to either
the current or the voltage, depending on the type of mode, but not to both
simultaneously.
An E mode is essentially characterized by Ez, from which all other field

components can be derived. Associated with the longitudinal electric field is
an electric displacement current, the current density being [(4.32c)]

−iωεEz = γ2ϕ(x, y)N1/2I(z) . (4.78)

In addition, there is a longitudinal electric conduction current on the metal
walls, with the surface density, according to (4.32b)

−(n×H)z =
∂

∂n
ϕ(x, y)N1/2I(z) , (x, y) ∈ S . (4.79)

The total (conduction plus displacement) longitudinal electric current is zero,3

and it is natural to identify the total current flowing in the positive direction
with I(z), which leads to the following equation for N :

N1/2

[

γ2

∫

+

dσ ϕ+

∫

+

ds
∂

∂n
ϕ

]

= 1 , (4.80)

3 This follows from the fact that H = 0 in the conductor, so that
∫

C
ds ·H =

∫

σ
dσ ·∇×H = 0.
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where the surface and line integrals, denoted by
∫

+
, are to be conducted over

those regions where ϕ and ∂
∂nϕ are positive. This equation is particularly

simple for the lowest E mode in any hollow waveguide, that is, the mode
of minimum cutoff frequency, for this mode has the property, to be estab-
lished in Sec. ??, that the scalar function ϕ is nowhere negative, and vanishes
only on the boundary. It follows that the normal derivative on the boundary
cannot be positive. Hence the displacement current flows entirely in the pos-
itive direction, and the conduction current entirely in the negative direction.
Consequently,

N =
1

γ4
(∫

dσ ϕ
)2
=
1

γ2

∫

dσ ϕ2

(∫

dσ ϕ
)2

, (4.81)

on employing the normalization condition for ϕ, (4.57), to express N in a form
that is independent of the absolute scale of the function ϕ, Therefore, for the
lowest E mode in any guide, a natural choice of characteristic impedance is,
from (4.36b),

Z = ζ
κ

k

1

γ2

∫

dσ ϕ2

(∫

dσ ϕ
)2

. (4.82)

For the other E modes, the φ normalization condition can be used in an
analogous way to obtain

Z = ζ
κ

k

1

γ2

∫

dσ ϕ2

(

∫

+
dσ ϕ+ 1

γ2

∫

+
ds ∂

∂nϕ
)2

. (4.83)

It may appear more natural to deal with the voltage rather than the cur-
rent in the search for a proper characteristic impedance definition, since the
transverse electric field of an E mode is derived from a potential [(4.32a)]. The
voltage could then be defined as the potential of some fixed point with respect
to the wall in a given cross section, thus determining N . In a guide of symmet-
rical cross section the only natural reference point is the center, which entails
the difficulty that there exists an infinite class of modes for which ϕ = 0 at
the center, and the definition fails. In addition, when this does not occur, as in
the lowest E mode, the potential of the center point does not necessarily equal
the voltage, if the characteristic impedance is defined on a current basis as we
have done. Hence, while significance can always be attached to the E-mode
current, no generally valid voltage definition can be offered.
By analogy with the E-mode discussion, we shall base a characteristic

admittance definition for H modes on the properties of Hz, which can be said
to define a longitudinal magnetic displacement current density, from (4.33d)

−iωµHz = γ2ψ(x, y)N−1/2V (z) . (4.84)

The total longitudinal magnetic displacement current is zero4 and we shall
identify the total magnetic current flowing in the positive direction with V (z).
4 Because E = 0 in the conductor, so is

∫

C
ds ·E =

∫

σ
dσ ·∇×E.
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The voltage thus defined equals the line integral of the electric field intensity
taken clockwise around all regions through which positive magnetic displace-
ment flows. Accordingly,

N = γ4

(
∫

+

dσ ψ

)2

= γ2

(

∫

+
dσ ψ

)2

∫

dσ ψ2
(4.85)

and [cf. (4.36d)]

Y = η
κ

k

1

γ2

∫

dσ ψ2

(

∫

+
dσ ψ

)2
. (4.86)

It would also be possible to base an admittance definition on the identification
of the transmission-line current with the total longitudinal electric conduction
current flowing in the positive direction on the metal walls. However, the
characteristic admittance so obtained will not agree in general with that just
obtained.
Although we have advanced rather reasonable definitions of characteristic

impedance and admittance, it is clear that these choices possess arbitrary fea-
tures and in no sense can be considered inevitable. This statement may convey
the impression that the theory under development is essentially vague and ill-
defined, which would be a misunderstanding. Physically observable quantities
can in no way depend on the precise definition of a characteristic impedance,
but this does not detract from its appearance in a theory which seeks to
express its results in conventional circuit language. Indeed, the arbitrariness
in definition is a direct expression of the greater complexity of waveguide
systems compared with low-frequency transmission lines. For example, in the
junction of two low-frequency transmission lines with different dimensions, the
conventional transmission-line currents and voltages are continuous to a high
degree of approximation and hence the reflection properties of the junction
are completely specified by the quantities which relate the current and voltage
in each line. In a corresponding waveguide situation, however, physical quan-
tities with such simple continuity properties do not exist in general, and it is
therefore not possible to describe the properties of the junction in terms of two
quantities which are each characteristic of an individual guide. Armed with
this knowledge, which anticipates the results to be obtained in subsequent
chapters, we are forced to the position that the characteristic impedance is
best regarded as a quantity chosen to simplify the electrical representation
of particular situation, and that different definitions may be advantageously
employed in different circumstances. In particular, the impedance definition
implicitly adopted at the beginning of the chapter, corresponding to N = 1,
is most convenient for general theoretical discussion since it directly relates
the transverse electric and magnetic fields. This choice, which may be termed
the field impedance (admittance), will be adhered to in the remainder of this
chapter.
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Before turning to the discussion of particular types of guides, we shall
derive a few simple properties of the electric and magnetic energies associated
with propagating and nonpropagating modes. The tools for the purpose are
provided by the complex Poynting vector theorem (ε real)

∇ · (E×H∗) = iω
(

µ|H|2 − ε|E|2
)

, (4.87)

and the energy theorem (ignoring any dependence of ε and µ on the frequency)

∇ ·
(

∂E

∂ω
×H∗ +E∗ × ∂H

∂ω

)

= i
(

ε|E|2 + µ|H|2
)

. (4.88)

[Proofs and generalizations of these theorems are given in the Problems at the
end of this chapter.] If (4.87) is integrated over a cross section of the guide,
only the longitudinal component of the Poynting vector survives (because
E⊥ vanishes on S), and we obtain the transmission-line form of the complex
Poynting vector theorem, as applied to a single mode [cf. (4.77)]:

d

dz

[

1

2
V (z)I(z)∗

]

=
d

dz
P = 2iω(UH − UE) , (4.89)

where UE and UH are the electric and magnetic linear energy densities. A
similar operation on (4.88) yields

d

dz

{

1

2

[

∂V (z)

∂ω
I(z)∗ + V ∗(z)

∂I(z)

∂ω

]}

= 2i(UE + UH) = 2iU , (4.90)

since ∂Et/∂ω, for example, involves ∂V (z)/∂ω in the same way that Et con-
tains V (z), for the scalar mode functions do not depend upon the frequency.
As a first application of these equations we consider a propagating wave pro-
gressing in the positive direction, i.e.,

V (z) = V eiκz ,
I(z) = Ieiκz ,

V = ZI . (4.91)

The complex power is real and independent of z:

P =
1

2
V I∗ =

1

2
Z|I|2 , (4.92)

whence we deduce from (4.89) that UE = UH ; the electric and magnetic linear
energy densities are equal in a progressive wave. To apply the energy theorem
we observe that

∂V (z)

∂ω
=
∂V

∂ω
eiκz + i

dκ

dω
zV eiκz , (4.93a)

∂I(z)

∂ω
=
∂I

∂ω
eiκz + i

dκ

dω
zIeiκz , (4.93b)
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and that

1

2

[

∂V (z)

∂ω
I(z)∗ + V ∗(z)

∂I(z)

∂ω

]

=
1

2

(

∂V

∂ω
I∗ + V ∗ ∂I

∂ω

)

+ i
dκ

dω
z
1

2
(V I∗ + V ∗I) . (4.94)

Therefore, (4.90) implies

dκ

dω

1

4
(V I∗ + V ∗I) =

dκ

dω
P = U , (4.95)

or
P = vU , (4.96)

where

v =
dω

dκ
= c
dk

dκ
= c

κ

k
. (4.97)

The relation thus obtained expresses a proportionality between the power
transported by a progressive wave and the linear energy density. The coef-
ficient v must then be interpreted as the velocity of energy transport. It is
consistent with this interpretation that v is always less than c, and vanishes
at the cutoff frequency. At frequencies large in comparison with the cutoff fre-
quency, v approaches the intrinsic velocity of the medium. It is interesting to
compare this velocity with the two velocities already introduced in discussing
one-dimensional propagation in a dispersive medium – the phase and group
velocities. The phase velocity equals the ratio of the angular frequency and
the propagation constant:

u =
ω

κ
= c

k

κ
, (4.98)

while the group velocity is the derivative of the angular frequency with respect
to the propagation constant:

v =
dω

dκ
. (4.99)

That the group velocity and energy transport velocity are equal is not unex-
pected. We notice that the phase velocity always exceeds the intrinsic velocity
of the medium, and indeed is infinite at the cutoff frequency of the mode. The
two velocities are related by

uv = c2 (4.100)

which is reminiscent of (1.39). A simple physical picture for the phase and
group velocities will be offered in Chapter 5.
Another derivation of the energy transport velocity, which makes more

explicit use of the waveguide fields, is suggested by the defining equation:

v =
P

U
=

∫

dσ e ·E×H∗

1

2

∫

dσ (ε|E|2 + µ|H|2) . (4.101)
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In virtue of the equality of electric and magnetic linear energy densities, and
the relation e×E = ZH, which is valid for an E-mode field propagating in
the positive direction [(4.45a)], we find using (4.36b)

v =
Z

µ

∫

dσ |H⊥|2
∫

dσ |H|2 = c
κ

k
, (4.102)

since H has no longitudinal component. Similarly, the energy transport ve-
locity for an H mode is from (4.45b) and (4.36d)

v =
Y

ε

∫

dσ |E⊥|2
∫

dσ |E|2 = c
κ

k
. (4.103)

When the wave motion on the transmission line is not that of a simple
progressive wave, but the general superposition of standing waves (or running
waves) described by

V (z) = V cosκz + iZI sinκz , (4.104a)

I(z) = I cosκz + iY V sinκz , (4.104b)

or

V (z) = (2Z)1/2
(

Aeiκz +Be−iκz
)

, (4.105a)

I(z) = (2Y )1/2
(

Aeiκz −Be−iκz
)

, (4.105b)

the electric and magnetic linear energy densities are not equal, in general,
since the complex power is a function of position on the line:

P (z) =
1

2

[

V I∗ cos2 κz + V ∗I sin2 κz + i sinκz cosκz
(

Z|I|2 − Y |V |2
)]

,

(4.106)
or

P (z) = |A|2 − |B|2 −AB∗e2iκz +A∗Be−2iκz . (4.107)

However, equality is obtained for the total electric and magnetic energies
stored in any length of line that is an integral multiple of 1

2
λg. To prove this,

we observe that by integrating (4.89)

P (z2)− P (z1) = 2iω(WH −WE) , (4.108)

where WE and WH are the total electric and magnetic energies stored in the
length of transmission line between the points z1 and z2. Now, the complex
power is a periodic function of z with the periodicity interval π/κ = 1

2
λg

[(4.39)], from which we conclude that P (z2) = P (z1) if the two points are
separated by an integral number of half guide wavelengths, which verifies
the statement. An equivalent form of this result is that the average electric
and magnetic energy densities are equal, providing the averaging process is
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extended over an integral number of half-guide wavelengths, or over a distance
large in comparison with 1

2
λg.

An explicit expression for the average energy density can be obtained from
the energy theorem (4.88). The total energy W , stored in the guide between
the planes z = z1 and z = z2, is given by the integral of (4.90), or

W =
1

4i

[

∂V (z)

∂ω
I(z)∗ + V (z)∗

∂I(z)

∂ω

]z=z2

z=z1

. (4.109)

On differentiating the voltage and current expressions (4.104a), (4.104b) with
respect to the frequency, we find

∂V (z)

∂ω
= iz

dκ

dω
ZI(z) +

[

cosκz
∂V

∂ω
+ i sinκz

∂ZI

∂ω

]

, (4.110a)

∂I(z)

∂ω
= iz

dκ

dω
Y V (z) +

[

cosκz
∂I

∂ω
+ i sinκz

∂Y V

∂ω

]

. (4.110b)

Hence

∂V (z)

∂ω
I(z)∗ + V (z)∗

∂I(z)

∂ω
= iz

dκ

dω

[

Z|I(z)|2 + Y |V (z)|2
]

+ . . . , (4.111)

where the unwritten part of this equation consists of those terms, arising from
the bracketed expressions in (4.110a) and (4.110b), which are periodic func-
tions of z with the period 1

2
λg. Thus, if the points z1 and z2 are separated by

a distance that is an integral multiple of 1

2
λg, these terms make no contribu-

tion to the total energy. We also note that the quantity Z|I(z)|2 + Y |V (z)|2
is independent of z:

Z|I(z)|2 + Y |V (z)|2 = Z|I|2 + Y |V |2 = 4(|A|2 + |B|2) , (4.112)

from which we conclude that the total energy stored in a length of guide,
l, which is an integral number of half-guide wavelengths, is, in terms of the
energy velocity (4.97)

W = l
dκ

dω

1

4

(

Z|I|2 + Y |V |2
)

=
l

v

1

4

(

Z|I|2 + Y |V |2
)

=
l

v

(

|A|2 + |B|2
)

.

(4.113)
The average total energy density is W/l, which has a simple physical signif-
icance in terms of running waves, being just the sum of the energy densities
associated with each progressive wave component if it alone existed on the
transmission line.
The energy relations for a nonpropagating mode are rather different; there

is a definite excess of electric or magnetic energy, depending on the type of
mode. The propagation constant for a nonpropagating (below cutoff) mode is
imaginary:

κ = i
√

γ2 − k2 = i|κ| , (4.114)
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and a field that is attenuating in the positive z-direction is described by

V (z) = V e−|κ|z

I(z) = Ie−|κ|z V = ZI . (4.115)

The imaginary characteristic impedance (admittance) of an E(H) mode is
given by

E mode: Z = iζ
|κ|
k
= i|Z| , (4.116a)

H mode: Y = iη
|κ|
k
= i|Y | . (4.116b)

The energy quantities of interest are the total electric and magnetic energy
stored in the positive half of the guide (z > 0). The difference of these energies
is given by (4.108), where z1 = 0 and z2 → ∞. Since all field quantities
approach zero exponentially for increasing z, P (z2)→ 0, and

WE −WH =
1

2iω
P (0) =

1

4iω
V I∗ . (4.117)

For an E mode
V I∗ = Z|I|2 = i|Z||I|2 , (4.118)

and so

E mode: WE −WH =
1

4ω
|Z||I|2 , (4.119)

which is positive. Hence an E mode below cutoff has an excess of electric
energy, in agreement with the capacitive reactance form (see below) of the
characteristic impedance. Similarly, for an H mode,

V I∗ = Y ∗|V |2 = −i|Y ||V |2 , (4.120)

whence

H mode: WH −WE =
1

4ω
|Y ||V |2 , (4.121)

implying that an H mode below cutoff preponderantly stores magnetic energy,
as the inductive susceptance form (see below) of its characteristic admittance
would suggest.
To obtain the total energy stored in a nonpropagating mode, we employ

(4.109), again with z1 = 0 and z2 →∞:

W =
i

4

(

∂V

∂ω
I∗ + V ∗ ∂I

∂ω

)

. (4.122)

On differentiating the relation V = ZI with respect to ω, and making appro-
priate substitutions in (4.122), we find

W =
i

4

[

dZ

dω
|I|2 + (Z + Z∗)

∂I

∂ω
I∗
]

. (4.123)
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The imaginary form of Z (= i|Z| for an E mode) then implies that

W = −1
4

d|Z|
dω
|I|2 . (4.124)

We may note in passing that the positive nature of the total energy demands
that |Z| be a decreasing function of frequency, or better, that the reactance
characterizing Z (= −iX) be an increasing function of frequency. The require-
ment is verified by direct differentiation:

−d|Z|
dω

=
1

ω

γ2

γ2 − k2
|Z| , (4.125)

and

E mode: W =
1

4ω

γ2

γ2 − k2
|Z||I|2 . (4.126)

A comparison of this result with (4.119) shows that

2WH

W
=
k2

γ2
. (4.127)

Thus, the electric and magnetic energies are equal just at the cutoff frequency
(k = γ), and as the frequency diminishes, the magnetic energy steadily de-
creases in comparison with the electric energy. In conformity with the latter
remark, the E-mode characteristic impedance approaches iζγ/k = iγ/ωε when
k/γ ¿ 1, which implies that a transmission line describing an attenuated E
mode at a frequency considerably below the cutoff frequency behaves like a
lumped capacitance C = ε/γ = ελc/(2π).
The H-mode discussion is completely analogous, with the roles of electric

and magnetic fields interchanged. Thus the total stored energy is

W = −1
4

d|Y |
dω
|V |2 , (4.128)

implying that the susceptance characterizing Y (= −iB) must be an increasing
function of frequency. Explicitly,

H mode: W =
1

4ω

γ2

γ2 − ω2
|Y ||V |2 , (4.129)

and
2WE

W
=
k2

γ2
. (4.130)

At frequencies well below the cutoff frequency, the electric energy is negligible
in comparison with the magnetic energy, and the characteristic admittance
becomes iηγ/k = iγ/ωµ. Thus, an H-mode transmission line under these cir-
cumstances behaves like a lumped inductance L = µ/γ = µλc/(2π).



4.6 Appendix: Two-Conductor Transmission Line 83

4.5 Problems for Chapter 4

1. Prove the complex Poynting vector theorem, (4.87), and the energy the-
orem, (4.88), starting from the definitions of the Fourier transforms in
time:

E(ω) =

∫ ∞

−∞

dt eiωtE(t) , (4.131a)

H∗(ω) =

∫ ∞

−∞

dt e−iωtH(t) . (4.131b)

What are the general forms of these theorems if no connection is assumed
between D(ω) and E(ω) and between B(ω) and H(ω)?

2. Show that if dispersion be included, the generalization of (4.88) is

∇ ·
(

∂E(ω)

∂ω
×H∗(ω) +E∗ × ∂H(ω)

∂ω

)

= i

[(

d

dω
(ωε)

)

|E|2 +
(

d

dω
(ωµ)

)

|H|2
]

≡ 4iw̃ . (4.132)

3. Calculate the corresponding group velocity v, defined as the ratio of the
rate of energy flow or power

P =
1

2

∫

σ

dσE×H∗ · ê, (4.133)

where ê is the direction of propagation of the electromagnetic disurbance
and the integration is over the corresponding perpendicular area σ, to the
energy per unit length,

Ũ =

∫

σ

dσ w̃ . (4.134)

Assuming that the time averaged electric and magnetic energies per unit
length are equal, show that

v =
c

1− d ln c
d lnω

, (4.135)

where c is the speed of light in the medium. Calculate this in the example
of the plasma model, where ε = ε0(1 − ω2

p/ω
2), µ = µ0, in terms of the

parameter called the plasma frequency ωp, and show that v < c.

4.6 Appendix: Two-Conductor Transmission Line

An ideal two-wire transmission line can be thought of as a series of elements,
each of which consists of a series inductance Ls and capacitance Cs, and a
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shunt inductance L⊥ and capacitance C⊥, as illustrated in Fig. 4.1. Let the
length of each element be ∆z. Then the voltage drop across the element is,
for a given frequency ω,

∆V = iωLsI +
1

iωCs
I , (4.136)

from which we infer a series impedance per unit length

Zs = iωLs +
1

iωCs
. (4.137)

Similarly, because the current shorted between the two conductors is

∆I = iω⊥V +
1

iωC⊥
V , (4.138)

the shunt admittance per unit length is

Y⊥ = iω⊥V +
1

iωC⊥
. (4.139)

Ls Cs Ls Cs

L⊥ C⊥ L⊥ C⊥

Fig. 4.1. Transmission line represented in terms of equivalent series and shunt
inductances and capacitances. Represented here are two elements, each of length
∆z, which are repeated indefinitely.


