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Chapter 4

Macroscopic

Electrodynamics

4.1 Force on an Atom

The Maxwell-Lorentz system of equations, (1.65) and (1.68), provides a micro-
scopic description of electromagnetic phenomena, at the classical level, ranging
from the simplest two-particle system to the detailed behavior of all particles in
a macroscopic system. However, for the latter case, we usually do not require
such a complete description, since our measurements involve macroscopic quan-
tities which are only indirectly related to the microscopic behavior of individual
atoms. We must develop a theory that is directly applicable to the macroscopic
situation with only an implicit reference back to the detailed characterization of
the system. The resulting macroscopic electrodynamics is a phenomenological

theory, by which is meant a theory that operates at the level of the phenom-
ena being correlated and predicted, while maintaining the possibility of contact
with a more fundamental theory—here, microscopic electrodynamics—that op-
erates at a deeper level. That contact exists to the extent that the macroscopic
measurements can be considered to be averages, over very many atoms, of the
results of hypothetical microscopic measurements.

To begin, we consider an atom, an electrically neutral assembly of point
charges,

∑

a

ea = 0, (4.1)

that are bound together in a small region. We want to study the response of
such a system to external electric and magnetic fields that vary only slightly
over the spatial extent of that system. We will first concentrate our attention
on the net force on the system at a given time, the sum of the forces on its
constituents, (1.68),

F =
∑

a

[

eaE(r
a
) + ea

va

c
×B(r

a
)
]

. (4.2)
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34 CHAPTER 4. MACROSCOPIC ELECTRODYNAMICS

Since the system is small, all the charges are near the center of mass of the
charge distribution, which lies at the position R. (For the purposes of the fol-
lowing expansion we could let R represent an arbitrary point inside the charge
distribution; the use of the center of mass allows us to separate intrinsic proper-
ties from those due to the motion of the atom as a whole.) We can then expand
the electric and magnetic fields about this reference point,

E(r
a
) = E(R) + [(r

a
− R)·∇]E(R) + . . . , (4.3)

and likewise for B, in which the subsequent terms are considered negligible.
Here ∇ means the gradient with respect to R. Now, the total force on the
atom, (4.2), can be rewritten in terms of this expansion as

F =

(

∑

a

ea

)

E(R) +
∑

a

ea[(ra − R)·∇]E(R) +

(

∑

a

ea

va

c

)

×B(R)

+
∑

a

ea

va

c
×[(ra − R)·∇]B(R) + . . . . (4.4)

The first term here is zero because of the neutrality of the system, (4.1). In the
second term, we identify the electric dipole moment, d,

d =
∑

a

ea(ra − R) =
∑

a

eara, (4.5)

(which is independent of R), while in the third, we recognize its time derivative,

∑

a

eava =
d

dt
d. (4.6)

Momentarily setting aside the fourth term, we find the force on the system
to be

F = (d·∇)E(R) +
1

c

(

d

dt
d

)

×B(R) + . . . . (4.7)

For the second term here, we can transfer the time derivative,

1

c

(

d

dt
d

)

×B(R) =
1

c

d

dt
[d×B(R)] −

1

c
d×

(

∂

∂t
+ V·∇

)

B(R), (4.8)

where V = dR/dt. Using (1.64) for ∂B/∂t, and rewriting the resulting double
cross product according to

d×(∇×E(R)) + (d·∇)E(R) = ∇(d·E(R)), (4.9)

we can present (4.7) as

F = ∇[d·E(R)] −
1

c
(V·∇)d×B(R) +

1

c

d

dt
[d×B(R)] + . . . . (4.10)
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Recalling that force is the time rate of change of momentum, we see that
(1/c)d×B introduces a redefinition of the momentum of the system.

We now return to the fourth term of (4.4), which would seem to correspond
to a small effect, since for atomic systems, va/c ≪ 1. A rearrangement of it is

∑

a

ea

va

c
×[(ra − R)·∇]B(R) =

∑

a

ea

c
V×[(ra − R)·∇]B(R)

+
∑

a

ea

c
(va − V)×[(ra − R)·∇]B(R), (4.11)

where, recalling the definition of the electric dipole moment (4.5), we can express
the first term on the right side as

1

c
V×(d·∇)B(R). (4.12)

Combining this contribution with the second term on the right side of (4.10),
and using (1.54), we obtain

1

c
[(d·∇)V − (V·∇)d]×B(R) =

1

c
[(d×V)×∇]×B(R)

= ∇

[

1

c
(d×V)·B(R)

]

. (4.13)

Collecting the various results to this point, we can now rewrite the total force
on the atom, (4.4), as

F = ∇[d·E(R)] + ∇

[

1

c
(d×V)·B(R)

]

+
d

dt

[

1

c
d×B(R)

]

+ FB , (4.14)

where FB represents the second term on the right side of (4.11),

FB =
∑

a

ea

c
(va − V)×[(ra − R)·∇]B(R), (4.15)

which can be rearranged as follows:

FB =
d

dt

∑

a

ea

c
(ra − R)×[(ra − R)·∇]B(R)

−
∑

a

ea

c
(ra − R)× [(va − V)·∇]B(R)

−
∑

a

ea

c
(ra − R)× [(ra − R)·∇]

d

dt
B(R). (4.16)

We must now recall the restricted nature of this description: The electric and
magnetic fields change only slightly over the dimensions of the system. The first
of the three terms on the right side of (4.16) is a small correction to what is
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already present in (4.14) as d

dt
[(1/c)d×B(R)], and is therefore to be neglected.

Furthermore, the last term of (4.16), which is well approximated by
∑

a

ea(ra − R)× [(ra − R)·∇] ∇×E(R), (4.17)

is of the same order of magnitude as the omitted terms in the expansion (4.4),
and is therefore also to be neglected. An average of the initial form of FB,
(4.15), with the single remaining contribution of (4.16), the second line there,
now gives

FB =
1

2

∑

a

ea

c
(va − V)×[(ra − R)·∇]B(R)

−
1

2

∑

a

ea

c
(ra − R)× [(va − V)·∇]B(R)

=
1

2

∑

a

ea

c
{[(ra − R)×(va − V)] ×∇}×B(R). (4.18)

What has finally emerged here is the magnetic dipole moment of the system,
µ,

µ =
1

2c

∑

a

ea(ra − R)×(va − V), (4.19)

so (4.18) is equal to (µ is constant in space)

FB = (µ×∇)×B(R) = ∇[µ·B(R)], (4.20)

where we have used (1.54). (It is, of course, the similarity of this structure to
∇[d·E(R)] that justifies the identification of µ as the magnetic analogue of
d.) We also recognize that a contribution of this form already appears in the
second term on the right side of (4.14), bearing the information that a moving
electric dipole also acts as a magnetic dipole. The comparison of the two effects,
characterized by 1

c
d×V and µ, is that of the typical speeds of the relatively

heavy atoms, |V|, and of the light electrons, |va|, in the interior of atoms,

|V| ≪ |va| ≪ c. (4.21)

Accordingly, we neglect the motional effects of the atoms, and finally write
(4.14) as

F = ∇[d·E(R) + µ·B(R)] +
d

dt

(

1

c
d×B(R)

)

. (4.22)

In the absence of time variation, what remains is a force associated with the
respective potential energies of a given electric dipole in an electric field,

−d·E (4.23)

and of a given magnetic dipole in a magnetic field,

−µ·B. (4.24)
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The energy interpretation does more than supply the force components as
negative gradients with respect to position coordinates. It also produces torques
as negative gradients with respect to angles. Take the example of a magnetic
dipole µ in the presence of a magnetic field B. If θ is the angle between µ and
B, the magnetic potential energy is

−|µ||B| cos θ. (4.25)

The implied internal torque, that is, the torque on this individual dipole, and
not the moment of the force on the dipole, is then

∂

∂θ
(|µ||B| cos θ) = −|µ||B| sin θ, (4.26)

(the reference point of this torque is at the position of the dipole), which can
be represented by a vector perpendicular to the plane formed by µ and B,

τ = µ×B. (4.27)

We shall now derive this vectorial result directly, along with its electric
counterpart; for simplicity, additional time derivative terms are omitted. The
torque, the moment of the force about the center of the charge distribution at
R is

τ =
∑

a

(ra − R)×

(

eaE(r
a
) +

1

c
eava×B(r

a
)

)

. (4.28)

The part proportional to the electric field is, when we neglect the variation of
E over the system, the electric torque

τE = d×E(R), (4.29)

as expected in analogy with (4.27). In deriving the magnetic torque, we first
make the unimportant change, va → va − V, using (4.21), and then transfer
the time derivative to get

τB =
∑

a

(ra − R)×

(

1

c
ea(va − V)×B(R)

)

→ −
∑

a

(va − V)×

[

1

c
ea(ra − R)×B(R)

]

→
1

2

∑

a

ea

c
{(ra − R)×[(va − V)×B(R)] − (va − V)×[(ra − R)×B(R)]}

= µ×B(R), (4.30)

where in the second line we have omitted the − 1

c

∂

∂t
B = ∇×E contribution as

negligible in comparison with τE . [See Problem 4.2 for a justification of (4.30).]
In the third line, we averaged the two preceding forms, and then used the first
identity in Problem 1.1. Putting all this together, we find the torque on the
system is given by

τ = d×E + µ×B, (4.31)

so that, as with the force, the result can be expressed in terms of the electric
and magnetic dipole moments, d and µ.
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4.2 Force on a Macroscopic Body

To this point, we have considered the response of a small system, an atom, for
example, to external electric and magnetic fields, which vary smoothly over the
system. Macroscopic materials are made up of large numbers of atoms. What
is the total force on such a piece of material? We must sum up all the forces
on the individual atoms. To the extent that the forces on the atoms vary but
slightly from one atom to another, the summation can be replaced by a volume
integration, weighted by the atomic density, n(r), the number of atoms per unit
volume at the macroscopic point r:

F =

∫

(dr)n(r)

[

d×(∇×E) + (d·∇)E + µ×(∇×B) + (µ·∇)B

+
d

dt

(

1

c
d×B

)

]

. (4.32)

Notice that we have rewritten (4.22) with the aid of the identities

∇(d·E) = d×(∇×E) + (d·∇)E, (4.33)

∇(µ·B) = µ×(∇×B) + (µ·∇)B. (4.34)

First a word about d and µ in these expressions. In the single atom formula
(4.22), the derivatives act only on E and B, which is reflected in (4.32). For
a many-atom system, the dipole moments could well vary from one location to
another and so have macroscopic spatial dependence. Accordingly, d(r) and
µ(r) are the average dipole moments at the point r. We now define the electric
polarization, P, and the magnetization, M, by

P(r, t) = n(r)d(r, t), (4.35)

and

M(r, t) = n(r)µ(r, t), (4.36)

respectively. The resulting macroscopic form of the total force at time t is

F(t) =

∫

(dr)

[

P(r, t)×[∇×E(r, t)] + [P(r, t)·∇]E(r, t)

+ M(r, t)×[∇×B(r, t)] + [M(r, t)·∇]B(r, t)

+
∂

∂t

(

1

c
P(r, t)×B(r, t)

)

]

. (4.37)

(Here, the distinction between d

dt
B and ∂

∂t
B has been dropped, because the

difference is of order of the small atomic velocity V, which is averaged to zero
in any case.)
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We proceed to simplify this in various ways. First, we use one of Maxwell’s
equations to obtain

P×(∇×E) +
∂

∂t

(

1

c
P×B

)

=

(

1

c

∂

∂t
P

)

×B, (4.38)

and then we use the identity

∇(M·B) = M×(∇×B) + (M·∇)B + B×(∇×M) + (B·∇)M, (4.39)

which is a generalization of (4.34). All subsequent steps involve the statement
that the integral is extended over a volume that includes the whole body, so
that, on the bounding surface of that volume, n(r) = 0. This means that in
performing partial integrations through the use of the divergence theorem, the
surface integrals vanish. In effect, then,

(P·∇)E → −(∇·P)E, (4.40)

and similarly, using ∇·B = 0, (4.39) yields

M×(∇×B) + (M·∇)B → (∇×M)×B. (4.41)

The immediate result is

F =

∫

(dr)

[

−(∇·P)E +
1

c

(

∂

∂t
P

)

×B + (∇×M)×B

]

. (4.42)

The comparison of this with the microscopic description of the force on charge
and current densities, (3.8) for zero magnetic charge, suggests the definition of
an effective charge density, ρeff , and an effective current density, jeff , as

ρeff(r, t) = −∇·P(r, t), (4.43)

jeff(r, t) =
∂

∂t
P(r, t) + c∇×M(r, t). (4.44)

Notice that these effective densities satisfy the equation of charge conservation,

∂

∂t
ρeff + ∇· jeff = 0. (4.45)

It is left to the reader to verify (Problem 4.3) that the total torque, τ , on the
body, the sum over all atoms of the external torques:

τ ext =

∫

(dr)nr×

[

d×(∇×E) + (d·∇)E + µ×(∇×B) + (µ·∇)B

+
1

c

d

dt
(d×B)

]

, (4.46)
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and of the internal torques:

τ int =

∫

(dr)n(d×E + µ×B), (4.47)

is properly reproduced as the integrated moment of the effective force density,

τ =

∫

(dr) r×

[

ρeffE +
1

c
jeff×B

]

. (4.48)

4.3 Macroscopic Electrodynamics

Now we construct a phenomenological macroscopic electrodynamics. And what
is that? Nothing more than the form in which electrodynamics first arose, in
the pre-atomic period, when only the properties of bulk matter were involved.
But the challenge here is to derive the phenomenological theory from the mi-
croscopic Maxwell-Lorentz description. Both theories will employ concepts that
are abstracted from the kinds of measurements that are appropriate to their
level of description. The microscopic regime is characterized by rapid space-
time variations unlike the macroscopic one, which is characterized by scales
large compared to those of atoms. Laboratory instruments, being large, di-
rectly measure average quantities. Macroscopic fields are thus defined in terms
of averages over space and time intervals, V and T , large on the atomic scale
but small compared to typical macroscopic intervals. We adopt the convention
that lower-case letters, like f(r, t), represent microscopic quantities while capi-
tal letters, like F (r, t), represent the corresponding macroscopic quantities. The
connection between the two is

F (r, t) =
1

T

∫

T

dt′
1

V

∫

V

(dr′) f(r + r′, t + t′) = f(r, t). (4.49)

This is a linear relation, in the sense that

f1 + f2 = f1 + f2, λf = λf, (4.50)

where λ is a constant. From this follows the connection between derivatives of
microscopic and macroscopic quantities, that is, that the averaged derivative of
a function is the derivative of the average:

∂

∂t
f(r, t) =

∂

∂t
f(r, t),

∇f(r, t) = ∇f(r, t). (4.51)

The microscopic charge distribution is composed of two parts. That which
is confined to atoms is called bound charge. When the remaining, “free,” mi-
croscopic charge distributions are appropriately averaged, we obtain the macro-
scopic densities

ρ = ρfree, J = jfree. (4.52)



4.3. MACROSCOPIC ELECTRODYNAMICS 41

electric magnetic charge current
field field density density

e b ρfree + ρbound jfree + jbound

E B ρ − ∇·P J + ∂

∂t
P + c∇×M

Table 4.1: Connection between microscopic and macroscopic quantities

What is the macroscopic role of the bound charge distributions? It must be
related to the effective charge and current densities given in terms of the polar-
ization and the magnetization by (4.43) and (4.44),

ρeff = −∇·P, (4.53)

jeff =
∂

∂t
P + c∇×M. (4.54)

As we have seen in the preceding section, these densities are examples of macro-
scopically measured quantities, disclosed by slowly varying electric and magnetic
fields. The physical measurements necessary for the definitions of ρeff and jeff ,
since they employ slowly varying fields, should correspond to the mathematical
process of averaging involved in the definitions of ρbound and jbound, so we have
the identifications

ρbound = ρeff

jbound = jeff . (4.55)

In view of (4.45), these two forms of macroscopic charge are separately con-
served.

The correspondence between microscopic and macroscopic quantities is given
by Table 4.1: The microscopic Maxwell equations now read

∇×b =
1

c

∂

∂t
e +

4π

c
(jfree + jbound), ∇·e = 4π(ρfree + ρbound),

−∇×e =
1

c

∂

∂t
b, ∇·b = 0. (4.56)

These are averaged to yield the macroscopic equations,

∇×B =
1

c

∂

∂t
E +

4π

c

(

J +
∂

∂t
P + c∇×M

)

, ∇·E = 4π(ρ − ∇·P),

−∇×E =
1

c

∂

∂t
B, ∇·B = 0, (4.57)

which can be cast into the form of the microscopic equations if we define the
displacement, D,

D = E + 4πP, (4.58)
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and the magnetic field, H,
H = B− 4πM (4.59)

(recall that B is properly called the magnetic induction). The final form of the
historical, macroscopic Maxwell equations is

∇×H =
1

c

∂

∂t
D +

4π

c
J, ∇·D = 4πρ,

−∇×E =
1

c

∂

∂t
B, ∇·B = 0. (4.60)

Note that the macroscopic charge is conserved,

∇·J +
∂

∂t
ρ = 0, (4.61)

which follows from the first pair of equations. As microscopically smooth distri-
butions, the density and flux of free charge will serve to measure the macroscopic
fields E and B. That is exhibited in the expression for the force on a macroscopic
charge distribution,

F =

∫

(dr)

(

ρE +
1

c
J×B

)

. (4.62)

[If bound charge is present, there is an additional contribution to the force
coming from (4.42).]

For a complete description of the system, we require further relations be-
tween D, E, P, and J, expressing how material bodies respond to electric fields.
Similar remarks hold for H, B, and M. These constitutive relations depend
on the characteristics of the particular material under consideration. Simple
classical models—which are not qualitatively misleading—will be considered in
the following two chapters.

4.4 Problems for Chapter 4

1. Find the total charge and the dipole moment of the charge density

ρ(r) = −d·∇δ(r).

2. Justify the approximation leading to the final form of τ in (4.30). In
particular, show that the total time derivative omitted in going from the
first to the second line of (4.30) leads to

d

dt

∑

a

ra×pa = τ ,

where the “canonical momentum” pa is defined by

pa = mava +
ea

c
A(r

a
),
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where the vector potential A for a constant magnetic field B is

A = −
1

2
r×B, ∇×A = B.

3. By summing the torque on an individual charge,

τa = ra×

(

eaE(ra) + ea

va

c
×B(ra)

)

,

first, over the charges in an individual atom, and thereby obtaining ex-
pressions in terms of da and µa, the dipole moments of the atom, and then
over the atoms making up a macroscopic body, obtain the result that

τ = τ ext + τ int,

where the external and internal torques are given by (4.46) and (4.47),
respectively. Then, verify that the torque acting on a macroscopic object
in electric and magnetic fields is given in terms of ρeff and jeff according
to (4.48).


