
Chapter 1

Maxwell’s Equations

The teaching of electromagnetic theory is something like that of American His-
tory in school; you get it again and again. Well, this is the end of the line.
Here is where we put it all together, and yet, not quite, since it is still classical
electrodynamics and the final goal is quantum electrodynamics. This preoccu-
pation reflects the all-pervasive nature of electromagnetism, with implications
ranging from the farthest galaxies to the interiors of the fundamental parti-
cles. In particular, the properties of ordinary matter, including those properties
classified as chemical and biological, depend only on electromagnetic forces, in
conjunction with the microscopic laws of quantum mechanics.

1.1 Electrostatics

Our intention is to move toward the general picture as quickly as possible, start-
ing with a review of electrostatics. We take for granted the phenomenology of
electric charge, including the Coulomb law of force between charges of dimen-
sions that are small in comparison with their separation. This is expressed by
the interaction energy, E, of a system of such charges in otherwise empty space,
a vacuum:

E =
1

2

∑

a,b

a6=b

eaeb

rab
, (1.1)

where ea is the charge of the ath particle while

rab = |ra − rb| (1.2)

is the separation between the ath and bth particles. (Throughout this book
we use the Gaussian system of units. Connection with the SI units will be
given in Appendix A.) As we shall see, this starting point, the Coulomb energy
(1.1), summarizes all the experimental facts of electrostatics. The energy of
interaction of an individual charge with the rest of the system can be emphasized
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by rewriting (1.1) as

E =
1

2

∑

a

ea

∑

b6=a

eb

rab
=

1

2

∑

a

eaφa, (1.3)

where we have introduced the electrostatic potential at the location of the ath
charge that is due to all the other charges,

φa =
∑

b6=a

eb

rab
. (1.4)

This is an action-at-a-distance point of view, in which the charge at a given
point interacts with charges at other, distant points. Another approach, which
generalizes and transcends action at a distance, employs the field concept (due
to Faraday), a field being a local quantity, defined at every point of space.
We take a first step in this direction by considering the potential as a field,
which is defined everywhere, not just where the point charges are located. This
generalized potential function, or simply the potential, φ(r), is

φ(r) =
∑

b

eb

|r− rb|
, (1.5)

where we now treat every charge on an equal footing, which means that in (1.5)
we sum over all charges eb. In terms of this potential, which is different from
φa, the energy E can be written as

E =
1

2

∑

a

eaφ(ra) −
∑

a

Ea. (1.6)

The last part of (1.6) is not to be understood numerically, but rather as an
injunction to remove those terms in the first sum that refer to a single particle.
In other words, we remove “self-action,” leaving the mutual interactions between
particles. The field concept naturally leads to self-action.

The notion of force is derived from that of energy, as we can see by consid-
ering the work done as a result of a spatial displacement. If we displace the ath
charge by an amount δra, the energy changes by an amount

δE = (∇aE)·δra = −Fa ·δra, (1.7)

where Fa is the force acting on the ath point charge. Comparing this with the
energy expression (1.1) we find the force on the ath particle to be

Fa = −∇a

∑

b6=a

eaeb

rab
= −∇aea

∑

b6=a

eb

rab
= −∇aeaφ(ra). (1.8)

In the last form, we have substituted φ(ra) for φa, so it would appear that an
extra self-action contribution has been introduced. To see that this is not true,
we first argue physically that the difference between φ(ra) and φa is independent
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of position, and so self-action does not contribute to the force. Mathematically,
what is this additional, unwanted, term? It is the negative gradient of the
self-energy:

−∇ea
ea

|r − ra|

∣

∣

∣

∣

r→ra

= e2
a

r − ra

|r − ra|3
∣

∣

∣

∣

r→ra

. (1.9)

Can we make sense of this? We could define the limit here by arbitrarily adding
a displacement vector ǫ of fixed direction to ra and letting its length approach
zero:

r = ra + ǫ, ǫ → 0, (1.10)

but at the cost of picking out a particular direction. In order to remove the
most blatant aspect of this directional dependence, let us also approach ra from
the opposite direction,

r = ra − ǫ, ǫ → 0, (1.11)

and average over the two possibilities, so that the additional term (1.9) becomes

−→ e2
a

1

2

(

ǫ

|ǫ|3 − ǫ

|ǫ|3
)

= 0. (1.12)

More elaborate limiting procedures, such as an average over all directions, can
be used, but the simple procedure of (1.12) suffices. Therefore, we can employ
φ(r) in (1.8), with the implicit use of the two-sided limit, (1.12), to calculate
the force.

With the force given in terms of the gradient of a field (the potential), the
electric field E can now be defined by

E(r) = −∇φ(r), (1.13)

so that the force on a point charge ea located at ra is

Fa = eaE(ra). (1.14)

The electric field E so introduced is a function calculable at r in terms of the
point charges located at rb,

E(r) =
∑

b

eb
r − rb

|r − rb|3
. (1.15)

As such, it remains an action-at-a-distance description, whereas, for many pur-
poses, it would be much more convenient to be able to completely characterize
the electric field by local properties. Such local statements will lead to differen-
tial equations, which, of course, must be supplemented by boundary conditions.

From its definition as the negative gradient of the potential, (1.13), the
electric field has zero curl:

∇×E(r) = −∇×∇φ(r) = 0. (1.16)
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Figure 1.1: A surface S bounding a volume V used in computing the electric
flux.

Besides the curl, the other elementary differential operation that can be applied
to a vector field is the divergence. To find ∇·E, we consider a related integral
statement. The integral of the normal component of E over a closed surface S
bounding a volume V is the electric flux (see Fig. 1.1):

∮

S

dS·E(r) =
∑

b

eb

∮

S

dS· r − rb

|r − rb|
1

|r − rb|2
=

∑

b

eb

∮

S

dΩb. (1.17)

Here, dS is an area element, directed normal to the surface, and dΩb is an
element of solid angle, which is defined in the following manner. The element
of area perpendicular to the line from the bth charge is (see Fig. 1.2)

dS· r − rb

|r − rb|
, (1.18)

which, when divided by the square of the distance from the bth charge gives the
solid angle dΩb subtended by dS as seen from the bth charge. There are now
two possible situations: either eb is inside, or it is outside the closed surface S,
as shown in Fig. 1.3. Correspondingly, the integral over all solid angles in the
two cases is

∮

S

dΩb =

{

4π if eb is inside S,
0 if eb is outside S.

(1.19)

Hence, the electric flux through a closed surface S is proportional to the enclosed
charge:

∮

S

dS·E(r) =
∑

b in V

4πeb. (1.20)
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Figure 1.2: Geometrical definition of solid angle.
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Figure 1.3: Topology if eb is inside (a) or outside (b) the surface S.
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This is the theorem of Carl Friedrich Gauss (1777–1855).
With our aim of deriving local statements in mind, we generalize the idea

of point charges to that of a continuous distribution of charge, as measured by
ρ(r), the volume density of charge at the point r. Then, the total charge in a
volume V is obtained by integrating the charge density over that region:

∑

b inV

eb =

∫

V

(dr) ρ(r). (1.21)

[Throughout this book we use the following notation for the element of volume:

(dr) = dx dy dz.] (1.22)

For point charges, the charge density is zero except at the location of the charges,

ρ(r) =
∑

b

ebδ(r − rb), (1.23)

where the three-dimensional (Dirac) δ function is defined by

∫

V

(dr) δ(r − rb) =

{

0 if rb is outside V,
1 if rb is inside V.

(1.24)

Then, the flux statement (1.20) becomes

4π

∫

V

(dr) ρ(r) =

∮

S

dS·E(r) =

∫

V

(dr)∇·E(r), (1.25)

by use of the divergence theorem relating surface and volume integrals. (See
Problem 1.2.) Since (1.25) is true for an arbitrary volume V , the integrands of
the volume integrals must be equal, so we obtain the equation satisfied by the
divergence of E,

∇·E(r) = 4πρ(r). (1.26)

These differential equations for the curl and divergence of E, (1.16) and
(1.26), respectively, completely characterize E when appropriate boundary con-

ditions are imposed. It is evident from (1.15) that, for a localized charge dis-
tribution, the magnitude of the electric field becomes vanishingly small with
increasing distance from the collection of charges:

|E| → 0 as r → ∞. (1.27)

One can also specify how rapidly this occurs. But it is remarkable that the weak
boundary condition (1.27) already implies a unique solution to the differential
equations (1.16) and (1.26). To show this, we suppose that E1 and E2 are two
such solutions. The difference, E = E1 − E2 satisfies

∇·E = 0, ∇×E = 0 everywhere, (1.28)

|E | → 0 as r → ∞, (1.29)
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from which we must prove that E = 0. The identity

∇×(∇×E) = ∇(∇·E) −∇2
E , (1.30)

combined with the vanishing of ∇×E and ∇·E, implies that

−∇2
E = 0. (1.31)

Let the single function E(r) be any Cartesian component of the vector field
E; it obeys

−∇2E(r) = 0. (1.32)

We present this as the everywhere valid statement

0 = −E∇2E = −∇·(E∇E) + (∇E)2, (1.33)

or

(∇E)2 −∇2 1

2
E2 = 0. (1.34)

Now we integrate this over the interior volume V (R) of a sphere of radius R
centered about an arbitrary point, which we take as the origin. The integral of
the second term in (1.34) is turned into an integral over the surface S(R) of the
sphere by means of the divergence theorem,

−
∫

V (R)

(dr)∇· (∇1

2
E2) = −

∮

S(R)

dS·∇1

2
E2 = −

∮

S(R)

dS
∂

∂R

1

2
E2. (1.35)

Using the relation between an element of area and an element of solid angle,
dS = R2dΩ, we can present this surface integral in terms of the average value
of E2 over the surface of the sphere,

〈E2〉R =
1

4π

∮

dΩ E2. (1.36)

And so the integral of (1.34) is

∫

V (R)

(dr) (∇E)2 − 4πR2 d

dR

1

2
〈E2〉R = 0. (1.37)

The decisive step now is to divide by the area 4πR2, and then integrate (1.37)
over R from 0 to ∞:

∫ ∞

0

dR
1

4πR2

∫

V (R)

(dr) (∇E)2 +
1

2
〈E2〉0 = 0, (1.38)

which finally incorporates the boundary condition (1.29), that E vanishes at all
infinitely remote points. Everything on the left side of (1.38) is non-negative, yet
it all adds up to zero. Accordingly, every individual contribution must be zero.
This tells us quite explicitly that E = 0 at the origin, which is anywhere, and,
consistently, that ∇E = 0 everywhere, or, that E is a constant, which is required
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to be zero by the boundary condition. This being true of any component, we
conclude that the vector E = 0. This completes our proof of the “uniqueness
theorem” of electrostatics, that the differential equations (1.16) and (1.26) have
a unique solution when the boundary condition (1.27) is imposed. (See Problem
1.3.)

From the Coulomb energy, we have thus derived the equations of electrostat-

ics:

∇·E = 4πρ,
∂

∂t
ρ = 0,

∇×E = 0,
∂

∂t
E = 0, (1.39)

where the time independence has been made explicit. We are now going to
remove the restriction to static conditions by letting the charges move in a
particularly simple way. The equations of electromagnetism that emerge from
this discussion will then be accepted as applicable to more general motions, as
justified by various tests of internal consistency.

1.2 Inference of Maxwell’s Equations

We introduce time dependence in the simplest way by assuming that all charges
are in uniform motion with a common velocity v as produced by transforming
a static arrangement of charges to a coordinate system moving with velocity
−v. (We insist that the same physics applies in the two situations.) At first we
will take |v| to be very small in comparison with a critical speed c, which will
be identified with the speed of light. To catch up with the moving charges, one
would have to move with their velocity, v. Accordingly, the time derivative in
the co-moving coordinate system, in which the charges are at rest, is the sum
of explicit time dependent and coordinate dependent contributions,

d

dt
=

∂

∂t
+ v·∇, (1.40)

so, in going from the static system to the uniformly moving system, we make
the replacement

∂

∂t
→ d

dt
=

∂

∂t
+ v·∇. (1.41)

The equation for the constancy of the charge density in (1.39) becomes, in
the moving system

0 =
∂ρ

∂t
→ dρ

dt
=

∂ρ

∂t
+ v·∇ρ, (1.42)

or, since v is constant,
∂ρ

∂t
+ ∇·(vρ) = 0. (1.43)

We recognize here a particular example of the charge flux vector or the (electric)
current density j,

j = ρv. (1.44)
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The relation between charge density and current density,

∂

∂t
ρ(r, t) + ∇· j(r, t) = 0, (1.45)

is the general statement of the conservation of charge. Conservation demands
that the rate of decrease of the charge within an arbitrary volume V must equal
the rate at which the charge flows out of the bounding surface S, that is

− d

dt

∫

V

(dr) ρ(r, t) =

∮

S

dS· j(r, t) =

∫

V

(dr)∇· j(r, t). (1.46)

Since V is arbitrary, the local conservation law, (1.45), follows. We also note
that the expression for the current density, (1.44), continues to be valid even
when v is dependent upon position, v → v(r, t). (See Problem 1.4.)

We can perform a similar transformation on the equation for the electric
field ∂E/∂t = 0; namely,

0 =
d

dt
E =

∂E

∂t
+ (v·∇)E. (1.47)

Making use of a vector identity, together with (1.26) and (1.44), (v is constant),

∇×(v×E) = v(∇·E) − (v·∇)E (1.48)

= v4πρ − (v·∇)E

= 4πj− (v·∇)E, (1.49)

we find an equation relating E to the current density,

0 =
∂E

∂t
+ 4πj− ∇×(v×E). (1.50)

[Notice that by taking the divergence of (1.50) we recover the local charge conser-
vation equation (1.45), so that the conservation of charge is not an independent
statement.] The quantity v × E represents a new phenomenon combining the
effects of motion with those of electric charge. To describe this new, induced
effect, we define the magnetic induction1 B by

v×E = cB, (1.51)

where c is a constant having the dimensions of velocity (which will turn out to
be the speed of light). Expressed in terms of the magnetic field, (1.50) becomes
an equation determining the curl of B,

∇×B =
1

c

∂

∂t
E +

4π

c
j. (1.52)

Next, we naturally ask for the divergence of B. According to the definition,
(1.51), we have

∇·B = ∇·
(v

c
×E

)

= −
(v

c
×∇

)

·E = −v

c ·(∇×E) = 0, (1.53)

1We will usually call B the magnetic field, but see Chapter 4.
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or
∇·B = 0. (1.54)

Moreover, in the co-moving coordinate system where the charges are at rest—
static—the magnetic field should also not change in time:

d

dt
B =

∂

∂t
B + (v·∇)B = 0, (1.55)

which becomes, when we use the identity in (1.48) as well as (1.54),

∂B

∂t
= ∇×(v×B), (1.56)

consistent with ∇·B = 0.
What do we do now? We need one experimental fact. Light is an electro-

magnetic oscillation. The evidence for this is overwhelming. As examples, we
note that electric and magnetic fields are known to influence the emission, prop-
agation, and absorption of light; and that radio and infrared waves, which differ
only in wavelength from visible light, are emitted by electric charge oscillations.
What must be done so that this fact is built into the equations we are inferring?
The existence of electromagnetic waves means that the equations determining
the electric field have solutions of the form

E ∼ f(z − ct), (1.57)

where c is the speed of the waves. Such waves, propagating in the z direction,
satisfy the second-order differential equation

∂2

∂z2
E =

1

c2

∂2

∂t2
E; (1.58)

for an arbitrary direction of propagation, the corresponding wave equation is

∇2E =
1

c2

∂2

∂t2
E. (1.59)

More precisely, we require that this equation should hold far from the charges
that produce the field. The left side of this equation can be written as [cf. (1.30)]

∇2E = −∇×(∇×E), (1.60)

since ∇·E = 0 outside the charge distribution, while, by means of (1.52) and
(1.56), the right side becomes (j is zero outside the charge distribution)

1

c2

∂2

∂t2
E =

1

c

∂

∂t
∇×B =

1

c
∇×[∇×(v×B)]. (1.61)

This shows that the desired differential equation will hold if

E = −v

c
×B. (1.62)
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But this cannot be a completely correct statement, since then v → 0 would
require E → 0. No electrostatics! However, all that is really necessary is that
the curl of this tentative identification be valid:

∇×E = −∇×

(v

c
×B

)

, (1.63)

or, if we use (1.56),

∇×E = −1

c

∂

∂t
B. (1.64)

This is consistent with electrostatics since it generalizes ∇×E = 0 to the time-
dependent situation. The fact that ∇×E = 0 has been used before to derive
∇·B = 0 is consistent here since the error is now seen to be of order (v/c)2.
[See (1.53).]

Collecting the above relations, you will recognize that we have arrived at
Maxwell’s equations,

∇×B =
1

c

∂

∂t
E +

4π

c
j, ∇·E = 4πρ,

−∇×E =
1

c

∂

∂t
B, ∇·B = 0. (1.65)

These equations of electromagnetism, as local, differential field equations, are
no longer restricted to the initial assumption of a common small velocity for all
charges.

To complete the dynamical picture we ask: What replaces (1.14) to describe
the force on an electric charge, when that charge moves with some velocity v

in given electric and magnetic fields E and B? We consider two coordinate
systems, one in which the particle is at rest (co-moving coordinate system) and
one in which it moves at velocity v. Suppose in the latter coordinate system,
the electric and magnetic fields are given by E and B, respectively. In the
co-moving frame, the force on the particle is

F = eEeff , (1.66)

where Eeff is the electric field in this frame. In transforming to the co-moving
frame, all the other charges—those responsible for E and B—have been given
an additional counter velocity −v. We then infer from (1.62) that (v/c) × B

has the character of an additional electric field in the co-moving frame. Hence,
the suggested Eeff is

Eeff = E +
v

c
×B, (1.67)

leading to the force law, due to Hendrick Antoon Lorentz (1835–1928),

F = e
(

E +
v

c
×B

)

. (1.68)

These results, Maxwell’s equations, (1.65), and the Lorentz force law, (1.68),
have not been derived, but inferred from a special circumstance. We will adopt
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these equations as describing the electromagnetic fields produced by, and acting
on, charges possessing arbitrary velocities, although the above discussion does
allow room for additional terms if v/c is no longer small. The fact that no
such terms are actually required is part of the implication of the special theory
of relativity (see problem 1.6). We will prefer, instead, to show the physical
consistency of the equations as they stand (see Chapter 3).

1.3 Discussion

We have arrived at the Maxwell-Lorentz electrodynamics by combining three
ingredients: the laws of electrostatics; the Galileo-Newton principle of relativity
(charges at rest, and charges with a common velocity viewed by a co-moving
observer, are physically indistinguishable); and the existence of electromagnetic
waves that travel in a vacuum at the speed c. The historical line of development
was otherwise. Until the beginning of the nineteenth century, electricity and
magnetism were unrelated phenomena. The discovery in 1820 by Hans Christian
Oersted (1777–1851) that an electric current influences a magnet—creates a
magnetic field—is formulated, for stationary currents, in the field equation

∇×B =
4π

c
j. (1.69)

The symbol c that appears in this equation is the ratio of electromagnetic and
electrostatic units of electricity (see Appendix A). Then, in 1831, Michael Fara-
day (1791–1867) discovered that relative motion of a wire and a magnet induces
a voltage in the wire—creates an electric field. Such is the content of

−∇×E =
1

c

∂

∂t
B, (1.70)

which extends the magnetostatic relation

∇·B = 0, (1.71)

that expresses the empirical absence of single magnetic poles. Finally, in 1864,
James Clerk Maxwell (1831–1879) recognized that the restriction to stationary
currents in (1.69), as expressed by ∇· j = 0, was removed in

∇×B =
4π

c
j +

1

c

∂

∂t
E, (1.72)

when joined to the electrostatic equation

∇·E = 4πρ. (1.73)

The deduction of the existence of electromagnetic waves that travel at the speed
c, in remarkable numerical agreement with the speed of light, was confirmed in
1867 by Heinrich Rudolf Hertz (1857–1894). It was the conflict between the
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existence of this absolute speed c and the relativity concept of Newtonian me-
chanics that set the stage for Einsteinian relativity. Already at the age of 16,
Albert Einstein (1879–1955) had recognized this paradox: To a co-moving New-
tonian observer, light waves should oscillate in space, but not move; however,
Maxwell’s equations admit no such solutions. Einsteinian relativity is an out-
growth of Maxwellian electrodynamics, not the other way about. That is the
spirit in which electrodynamics is developed as a self-contained subject in this
book.

1.4 Problems for Chapter 1

1. Verify the following identities explicitly:

A×(B×C) + B×(C×A) + C× (A×B) = 0,

∇×(A×B) = A×(∇×B) − B×(∇×A) − (A×∇)×B + (B×∇)×A,

∇·(λA×B) = λ(B·∇×A − A·∇×B) + A×B·∇λ.

2. Verify, using Cartesian coordinates, the divergence theorem,

∫

V

(dr)∇·E =

∮

S

dS·E,

where V is the volume contained within the closed surface S, dS being
the surface element in the direction of the outward normal, and Stokes’
theorem,

∫

S

dS· (∇×E) =

∮

C

dl·E,

where C is the closed boundary of the open surface S, and dl is the
tangentially directed line element. The sense of the line integration is
given by the right hand rule. [That is, if the contour C is traversed in the
sense of the fingers of the right hand, the thumb points in the sense of the
orientation of the surface.]

3. This question has to do with the uniqueness theorem which follows from
(1.37).

(a) Directly from that equation, what assumption about |E(r)|, |r| → ∞,
will produce the conclusion that E = 0 everywhere?

(b) How would it work out if one had integrated this equation from R = 0
to ∞, without dividing by R2?

(c) How fast would 〈E2〉R have to fall off with R so that we could conclude
E = 0 everywhere by simply taking R → ∞ in (1.37)?
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4. For an arbitrarily moving charge, the charge and current densities are

ρ(r, t) = eδ(r− R(t)), j(r, t) = e
dR

dt
δ(r − R(t)),

where R(t) is the position vector of the charged particle. Verify the state-
ment of conservation of charge,

∂

∂t
ρ(r, t) + ∇· j(r, t) = 0.

5. In a region where no charges are present, the potential satisfies Laplace’s
equation,

∇2φ = 0.

Such a function is called harmonic. Show that in a region where the poten-
tial is harmonic, the potential nowhere assumes a maximum or minimum
value. Use this result to give another proof of the uniqueness theorem of
electrostatics proved in Section 1.1.

6. In this chapter we “derived” Maxwell’s equations by exploiting approxi-
mate Galilean invariance. However, we cannot push Galilean invariance
further, since it is not valid in O(v2/c2). The correct relativity is that of
Einstein. Verify that Maxwell’s equations are invariant under the trans-
formations of Einstein’s special relativity, as follows. Consider a Lorentz
transformation corresponding to a boost in the x direction, which on the
space-time coordinates is defined by

x′
0 = γ(x0 − βx1),

x′
1 = γ(x1 − βx0),

x′
2 = x2,

x′
3 = x3.

Here x0 = ct, x1 = x, x2 = y, x3 = z, and

β =
v

c
, γ = (1 − β2)−1/2,

v being the relative velocity of the two coordinate frames. We can regard
the four quantities xµ, µ = 0, 1, 2, 3, as forming a four-vector. The four-
current jµ, j0 = cρ, ji, i = 1, 2, 3, constructed from the electric charge
and current densities, transforms by the same law:

j′0 = γ(j0 − βj1),

j′1 = γ(j1 − βj0),

j′2 = j2,

j′3 = j3.
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On the other hand, the electric and magnetic field vectors are components
of a four-tensor, and so they have a more complicated transformation law.
Consider a boost by an arbitrary velocity v. Then the components of the
electric and magnetic fields in the direction of v do not change, while the
components in directions perpendicular to v are entangled:

E′
‖ = E‖, E′

⊥ = γ
(

E +
v

c
×B

)

⊥
,

B′
‖ = B‖, B′

⊥ = γ
(

B− v

c
×E

)

⊥
.

For v = (v, 0, 0) verify explicitly that if Maxwell’s equations hold in the
unprimed frame, they hold in the primed frame as well, no matter how
near v may approach c. This was essentially the path by which Lorentz
and Poincaré derived the transformation equations (but not the physics)
of special relativity. A more complete treatment of Einsteinian relativity
will be given in Chapter 10.

7. A charge e moves in the vacuum under the influence of uniform fields E

and B. Assume that E·B = 0 and that v·B = 0. At what velocity does
the charge move without acceleration? What is its speed when |E| = |B|?
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Chapter 2

Magnetic Charge I

Our discussion in Chapter 1 contains a certain implicit assumption. When it
came to (1.62),

E = −v

c
×B, (2.1)

with its implication that static electric charges produce no electric field, we
knew better than to accept this and altered it to

∇×E = −∇×

(v

c
×B

)

, (2.2)

thereby admitting, for v = 0, a static electric field, one obeying ∇×E = 0.
Why then did we earlier accept without question the relation (1.51),

B =
v

c
×E, (2.3)

with its implication that all magnetic fields are due to the motion of electric
charges? This is the (1820) hypothesis of André Marie Ampère (1775–1836).
But is it true? An affirmative response is conventional, but the mathemati-
cal development allows a more general possibility. Again, all that was really
required in the above was the curl relation

∇×B = ∇×

(v

c
×E

)

, (2.4)

admitting the possibility, for v = 0, of a static magnetic field obeying ∇×B = 0,
one that has its origin in magnetic charge. If ρm is the density of such magnetic
charge, the analogy with electrostatics suggests that

∇·B = 4πρm. (2.5)

The implication of (2.5) is that a further source of magnetic fields, other than
moving electric charges, could exist in magnetic charge. Whether this possibility
is realized in nature still awaits experimental confirmation.

17
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Further changes in Maxwell’s equations are required if magnetic charge ex-
ists. Since then ∇·B 6= 0, the co-moving time derivative of B becomes [cf.
(1.48)]

0 =
d

dt
B =

∂

∂t
B + (v·∇)B =

∂

∂t
B − ∇×(v×B) + v(∇·B). (2.6)

Then, using (2.5) and the magnetic current density jm, defined as

jm = ρmv, (2.7)

together with (2.2), we obtain the following modified Maxwell equation

−∇×E =
1

c

∂

∂t
B +

4π

c
jm. (2.8)

Notice that (2.8) implies the conservation of magnetic charge:

∂

∂t
ρm + ∇· jm = 0. (2.9)

The complete set of Maxwell’s equations, when magnetic charge is present,
now reads

∇×B =
1

c

∂

∂t
E +

4π

c
je, ∇·E = 4πρe,

−∇×E =
1

c

∂

∂t
B +

4π

c
jm, ∇·B = 4πρm, (2.10)

where we have consistently used the subscript e to denote densities for electric
charge. Observe that these equations are invariant in form under the replace-
ments (duality transformation)

ρe → ρm, E → B, je → jm,

ρm → −ρe, B → −E, jm → −je. (2.11)

The generalized Lorentz force law, suggested by this symmetry, is

F = e
(

E +
v

c
×B

)

+ g
(

B− v

c
×E

)

, (2.12)

for a particle carrying both electric and magnetic charge, e and g, respectively.
Although from time to time there have been spectacular reports of the dis-

covery of magnetic charge (Price, 1975; Cabrera, 1982), these “discoveries” were
never replicated, and serious objections were raised in each instance. Neverthe-
less, there are strong theoretical reasons to believe that magnetic charge exists
in nature, and may have played an important role in the development of the uni-
verse. Searches for magnetic charge continue at the present time, emphasizing
that electromagnetism is very far from being a closed subject.
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2.1 A Very Brief History of Magnetic Charge

It is said that Peregrinus in 1269 observed that magnets (lodestones) always have
two poles, which he called north and south. This was elevated to a “hypothesis”
by Ampère in the early 19th Century. The first theoretical calculation of the
motion of a charged particle in the presence of a single magnetic pole was
performed by Poincaré in 1896 to explain recent observations. A few years
later, Thomson showed that a static system consisting of a magnetic pole and
an electric charge possessed an angular momentum—see Problem 3.8. It was
Dirac in 1931 who showed that magnetic charge was consistent with quantum
mechanics only if electric and magnetic charges were quantized: For a system
consisting of a pure magnetic charge g and a pure electric charge e, eg had to
be an integral (or half-integral) multiple of h̄c. Many people have contributed
to the theory of magnetic charge subsequently; notable is the work of Schwinger
in the 1960s and 1970s, especially his concept of dyons, particles which carry
both electric and magnetic charge.

Many searches, both terrestrial and cosmic, have been carried out to find
magnetic monopoles in nature, but, so far, to no avail. Worth mentioning is the
induction technique of Luis Alvarez, et al. Positive reports were given by Price
in 1975 [cited in the Reader’s Guide] and by Blas Cabrera in 1982.1 These,
however, were never confirmed, and are no longer believed to offer any evidence
for magnetic charge, even by their authors.

However, modern unified theories of fundamental interactions typically imply
the existence of magnetic monopoles, or of dyons, often at extremely high mass
scales (∼ 1016 GeV), but perhaps at nearly accessible energies (∼ 10 TeV).
Moreover, there appears to be no reason why an elementary monopole or dyon
of the Dirac-Schwinger type could not exist. So experimental searches continue.

2.2 Problems for Chapter 2

1. Write Maxwell’s equations with magnetic charge in terms of

F = E + iB, i =
√
−1,

and related combinations of charge and current. Verify that these equa-
tions retain their form under the transformation illustrated by

F → e−iφF,

where φ is an arbitrary constant. Express this as a transformation of E, B,
and the charge-current quantities. What is the geometric interpretation?
What is the particular form of this transformation when φ = π/2?

2. Suppose every charged particle carried electric and magnetic charge in the
universal ratio gk/ek = λ. Is there another way of looking at this situation
in which we would be unaware of magnetic charge?

1B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982).


