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1

Maxwell’s Equations

1.1 Microscopic Electrodynamics

Electromagnetic phenomena involving matter in bulk are approximately de-
scribed by the Maxwell field equations, in SI units,1

∇ × H =
∂

∂t
D + J, ∇ · D = ρ , (1.1a)

∇ × E = − ∂

∂t
B, ∇ · B = 0 , (1.1b)

together with constitutive equations of the medium which in their most com-
mon form are

D = εE , B = µH , J = σE . (1.2)

This theory takes no cognizance of the atomic structure of matter, but rather
regards matter as a continuous medium that is completely characterized by the
three constants ε, µ, and σ. Here ε is the electric permittivity (or “dielectric
constant”), µ is the magnetic permeability, and σ is the electric conductivity.
The dependence of these material parameters on the nature of the substance,
density, temperature, oscillation frequency, and so forth, is to be determined
empirically. Opposed to this point of view, which we shall call macroscopic,
is that initiated by Lorentz as an attempt to predict the properties of gross
matter from the postulated behavior of atomic constituents. It is the two-fold
purpose of such a theory to deduce the Maxwell equations as an approximate
consequence of more fundamental microscopic field equations and to relate
the macroscopic parameters ε, µ, and σ to atomic properties. Although the
macroscopic theory forms an entirely adequate basis for our work in this
monograph, the qualitative information given by simple atomic models is of
such value that we begin with an account of the microscopic theory.

1 See the Appendix for a discussion of the different unit systems still commonly
employed for electromagnetic phenomena.
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1.1.1 Microscopic Charges

That attribute of matter which interacts with an electromagnetic field is elec-
tric charge. Charge is described by two quantities, the charge density ρ(r, t)
and the current density j(r, t). The charge density is defined by the state-
ment that the total charge Q, within an arbitrary volume V at the time t, is
represented by the volume integral [(dr) = dx dy dz is the element of volume]

Q =

∫

V

(dr) ρ(r, t) . (1.3)

Of particular interest is the point charge distribution which is such that the
total charge in any region including a fixed point R is equal to a constant
q, independent of the size of the region, while the total charge in any region
that does not include the point R vanishes. The charge density of the point
distribution will be written

ρ(r) = q δ(r − R) , (1.4)

with the δ function defined by the statements

∫

V

(dr) δ(r − R) =

{

1 , RwithinV ,
0 , R notwithinV .

(1.5)

It is a consequence of this definition that the δ function vanishes at every point
save R, and must there be sufficiently infinite to make its volume integral
unity. No such function exists, of course, but it can be approximated with
arbitrary precision. We need only consider, for example, the discontinuous
function defined by

δǫ(r − R) =

{

0 , |r − R| > ǫ ,
1

4

3
πǫ3

, |r − R| < ǫ , (1.6)

in the limit as ǫ→ 0. Other possible representations are

δ(r − R) = lim
ǫ→0

1

π2

ǫ

(|r − R|2 + ǫ2)2
, (1.7a)

δ(r − R) = lim
ǫ→0

1

ǫ3
e−π|r−R|2/ǫ2 . (1.7b)

We shall not hesitate to treat the δ function as an ordinary, differentiable
function.

The elementary constituents of matter, which for our purposes may be
considered to be electrons and atomic nuclei, can ordinarily be treated as point
charges, for their linear dimensions (∼ 10−13 cm) are negligible in comparison
with atomic distances (∼ 10−8 cm). The charge density of a number of point
charges with charges qa located at the points ra, a = 1, . . . , n is
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ρ(r) =
n
∑

a=1

qaδ(r − ra) . (1.8)

If the charges are in motion, the charge density will vary in time in consequence
of the time dependence of ra(t). The time derivative, for fixed r, is

∂

∂t
ρ(r, t) =

n
∑

a=1

qava · ∇ra
δ(r − ra) = −

n
∑

a=1

qava · ∇rδ(r − ra) , (1.9)

or
∂

∂t
ρ(r, t) + ∇r ·

n
∑

a=1

qavaδ(r − ra) = 0 , (1.10)

where va = d
dtra is the velocity of the ath point charge.

Charge in motion constitutes a current. The current density or charge flux
vector j(r, t) is defined by the equation

I =

∫

S

dS n · j(r, t) , (1.11)

where I dt is the net charge crossing an arbitrary surface S in the time interval
dt. Positive charge crossing the surface in the direction of the normal n, or
negative charge moving in the opposite direction, make a positive contribution
to the total current I, while charges with the reversed motion from these are
assigned negative weight factors in computing I. The total charge leaving an
arbitrary region bounded by the closed surface S, in the time interval dt, is

dQ = dt

∮

S

dS n · j(r, t) , (1.12)

where n is the outward-drawn normal to the surface S. The fundamental
property of charge, indeed its defining characteristic, is indestructibility. Thus
the net amount of charge that flows across the surface S bounding V must
equal the loss of charge within the volume. Hence

∮

S

dS n · j(r, t) ≡
∫

V

(dr)∇ · j(r, t) = − ∂

∂t

∫

V

(dr) ρ(r, t) , (1.13)

in which we have also employed the divergence theorem relating surface and
volume integrals. Since the statement must be valid for an arbitrary volume,
we obtain as the conservation equation of electric charge

∇ · j(r, t) +
∂

∂t
ρ(r, t) = 0 . (1.14)

It will be noted that an equation of precisely this form has been obtained for
an assembly of point charges in (1.10), with
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j(r, t) =
n
∑

a=1

qavaδ(r − ra) . (1.15)

Thus, for a single point charge,

j = ρv . (1.16)

The elementary charged constituents of matter possess inertia. Associated
with charges in motion, therefore, are the mechanical properties of kinetic
energy, linear momentum, and angular momentum. The definitions of these
quantities for a system of n particles with masses ma, a = 1, . . . , n, are,
respectively,

E =

n
∑

a=1

1

2
mav

2
a , (1.17a)

p =

n
∑

a=1

mava , (1.17b)

L =

n
∑

a=1

mara × va , (1.17c)

provided all particle velocities are small in comparison with c, the velocity of
light in vacuo. The more rigorous relativistic expressions are

E =

n
∑

a=1

mac
2

(

1
√

1 − v2
a/c

2
− 1

)

, (1.18a)

p =

n
∑

a=1

ma
√

1 − v2
a/c

2
va , (1.18b)

L =

n
∑

a=1

ma
√

1 − v2
a/c

2
ra × va , (1.18c)

but this refinement is rarely required in studies of atomic structure.

1.1.2 The Field Equations

The electromagnetic field is described by two vectors, the electric field in-
tensity (or electric field strength) e(r, t) and the magnetic field intensity (or
magnetic induction) b(r, t). [In this Chapter, for pedagogical purposes, we
will used lower-case letters to denote the microscopic fields, for which we will
use (rationalized) Heaviside-Lorentz units. See the Appendix.] The equations
defining these vectors in relation to each other and to the charge-current dis-
tribution are postulated to be
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∇ × b =
1

c

∂

∂t
e +

1

c
j , ∇ · e = ρ , (1.19a)

∇ × e = −1

c

∂

∂t
b , ∇ · b = 0 , (1.19b)

which are known variously as the microscopic field equations, or the Maxwell-
Lorentz equations. Correspondence is established with the physical world by
the further postulate that an electromagnetic field possesses the mechanical
attributes of energy and momentum. These quantities are considered to be
spatially distributed in the field, and it is therefore necessary to introduce
not only measures of density, analogous to the charge density, but in addition
measures of flux, analogous to the current density. We define

• energy density:

U =
e2 + b2

2
, (1.20a)

• energy flux vector or the Poynting vector:

S = c e× b , (1.20b)

• linear momentum density:

G =
1

c
e × b , (1.20c)

• linear momentum flux dyadic or the stress dyadic:

T = 1
e2 + b2

2
− ee− bb , (1.20d)

The symbol 1 indicates the unit dyadic. The basis for these definitions are
certain differential identities, valid in the absence of charge and current, which
have the form of conservation equations, analogous to that for electric charge.
It may be directly verified that (ρ = 0, j = 0)

∂

∂t
U + ∇ · S = 0 ,

∂

∂t
G + ∇ · T = 0 , (1.21)

on employing the identities

∇ · (A× B) = (∇ × A) · B− (∇ × B) · A , (1.22a)

(∇ × A) × A = −A× (∇ × A) = (A · ∇)A − ∇
1

2
A2 . (1.22b)

The total energy

E =

∫

(dr)U (1.23)

and the total linear momentum,
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p =

∫

(dr)G (1.24)

of an electromagnetic field confined to a finite region of space, are constant in
time, for no energy or momentum flows through a surface enclosing the entire
field. Energy and momentum, like charge, are recognized by the property of
permanence.

The relation between the energy and momentum quantities expressed by

S = c2G (1.25)

is a consequence of, or at least is consistent with, the relativistic connection
between energy and mass,

E = mc2 . (1.26)

This may be seen from the remark that the momentum density can also be
considered a mass flux vector, or alternatively, by the following considera-
tions. On multiplying the energy conservation equation in (1.21) by r and
rearranging terms, we obtain

∂

∂t
rU + ∇ · (Sr) = S = c2G , (1.27)

which, on integration over a volume enclosing the entire field, yields

p =
d

dt

∫

(dr) r
U

c2
=
E

c2
dR

dt
=
E

c2
V , (1.28)

where

R =
1

E

∫

(dr) rU (1.29)

is the energy center of gravity of the field, which moves with velocity V =
dR/dt. We have here the conventional relation between momentum and ve-
locity, with E/c2 playing the role of the total mass of the electromagnetic
field.

The velocity of the energy center of gravity, V, which we shall term the
group velocity of the field, is necessarily less in magnitude than the velocity
of light. This is a result of the identity

(e× b)2 =

(

e2 + b2

2

)2

−
(

e2 − b2

2

)2

− (e · b)2 , (1.30)

and the consequent inequality

|e× b| ≤ e2 + b2

2
, (1.31)

for from (1.24)
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|p| ≤ 1

c

∫

(dr) |e × b| ≤ E

c
, (1.32)

and therefore
|V| ≤ c . (1.33)

Equality of |V| with c is obtained only when e · b = 0, e2 = b2, and e × b

has the same direction everywhere. That is, the electric and magnetic field
intensities must be equal in magnitude, perpendicular to each other, and to a
fixed direction in space, as is the case for an ideal plane wave. More generally,
we call such a configuration a unidirectional light pulse, for which further
properties are given in Problem 1.34.

Another velocity associated with the field can be defined in terms of the
center of gravity of the momentum distribution. We proceed from the conser-
vation of momentum equation in (1.21) written, for manipulatory convenience,
in component form,

∂

∂t
Gj +

3
∑

i=1

∂

∂xi
Tij = 0 , j = 1, 2, 3 . (1.34)

On multiplying this equation by xj , and summing with respect to the index
j, we obtain

∂

∂t

∑

i

xiGi +
∑

i,j

∂

∂xi
(Tijxj) =

∑

i

Tii ≡ TrT , (1.35)

(which introduces the concept of the trace of the dyadic T, TrT) or, returning
to vector notation,

∂

∂t
(r ·G) + ∇ · (T · r) = U , (1.36)

for (note that we do not use the summation convention over repeated indices
here)

Tii = U − (e2i + b2i ) , Tr T = U . (1.37)

The relation (1.36) thus established between the energy density and momen-
tum quantities we shall call the virial theorem. On integration over the entire
region occupied by the field, we find

E =
d

dt

∫

(dr) r · G ≡ W · p , (1.38)

which defines a velocity W, or at least its component parallel to p, which we
shall term the phase velocity of the field. Combining the two relations between
the total energy and momentum, (1.28) and (1.38), we obtain

W ·V = c2 , (1.39)

which implies that the magnitude of the phase velocity is never less than the
speed of light.
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A further conservation theorem, which is to be identified as that for an-
gular momentum, can be deduced from the linear momentum conservation
theorem. Multiplying the jth component of (1.34) by xi and subtracting a
similar equation with i and j interchanged, we obtain

∂

∂t
(xiGj − xjGi) =

∑

k

∂

∂xk
(Tkixj − Tkjxi) + Tij − Tji , (1.40)

However, the stress dyadic is symmetrical,

Tij = δij
e2 + b2

2
− eiej − bibj = Tji , (1.41)

and therefore (in vector notation)

∂

∂t
(r × G) + ∇ · (−T × r) = 0 , (1.42)

which implies that the total angular momentum

L =

∫

(dr) r × G (1.43)

of a field confined to a finite spatial volume is constant in time.
In the presence of electric charge, the energy and momentum of the elec-

tromagnetic field are no longer conserved. It is easily shown that

∂

∂t
U + ∇ · S = −j · e , (1.44a)

∂

∂t
G + ∇ · T = −(ρ e +

1

c
j× b) , (1.44b)

implying that electromagnetic energy is destroyed at the rate of j · e per unit
volume, and that ρ e+ 1

c j× b measures the rate of annihilation of linear elec-
tromagnetic momentum, per unit volume. In a region that includes only the
ath elementary charge, electromagnetic energy and momentum disappear at
a rate qava · e(ra), and qa

(

e(ra) + 1
cva × b(ra)

)

, respectively. If the inde-
structibility of energy and momentum is to be preserved, these expressions
must equal the rate of increase of the energy and linear momentum of the ath
elementary charge,

dEa

dt
= qava · e(ra) , (1.45a)

dpa

dt
= qa

(

e(ra) +
1

c
va × b(ra)

)

= Fa , (1.45b)

which determines the force, Fa, exerted on the ath charge by the electromag-
netic field, in terms of the rate of change of mechanical momentum pa = mava.
The consistency of the definitions adopted for field energy and momentum is
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verified by the observation that the rate of increase of the energy of the ath
particle, in accord with mechanical principles, is equal to the rate at which
the force Fa does work on the particle,

dEa

dt
= Fa · va . (1.46)

In a similar fashion, the rate of loss of electromagnetic angular momentum
per unit volume r ×

(

ρ e + 1
c j× b

)

, when integrated over a region enclosing
the ath charge, must equal the rate of increase of La, the angular momentum
of the particle,

dLa

dt
= qara ×

(

e(ra) +
1

c
va × b(ra)

)

= ra × Fa . (1.47)

The identification of electromagnetic angular momentum is confirmed by this
result, that the rate at which the angular momentum of the particle increases
equals the moment of the force acting on it. For a further discussion of the
local conservation of energy and momentum see Problem 1.31.

1.2 Variational Principle

The equations of motion of the field and matter can be expressed in the
compact form of a variational principle or Hamilton’s principle. It is first con-
venient to introduce suitable coordinates for the field. These we shall choose
as the vector potential a and the scalar potential φ, defined by

e = −1

c

∂

∂t
a − ∇φ , b = ∇ × a , (1.48)

which ensures that the second set of field equations (1.19b) is satisfied identi-
cally. The potentials are not uniquely determined by these equations; rather,
the set of potentials

a′ = a− ∇ψ , φ′ = φ+
1

c

∂

∂t
ψ (1.49)

leads to the same field intensities as a and φ, for arbitrary ψ. Such a modifica-
tion of the potentials is referred to as a gauge transformation, and those quan-
tities which are unaltered by the transformation are called gauge invariant.
The absence of a precise definition for the potentials will cause no difficulty
provided that all physical quantities expressed in terms of the potentials are
required to be gauge invariant.

A mechanical system is completely characterized by a LagrangianL, which
is such that

∫ t1
t0

dt L is an extremal for the actual motion of the system, in com-
parison with all neighboring states with prescribed values of the coordinates
at times t0 and t1,
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δ

∫ t1

t0

dt L = 0 . (1.50)

We consider a general Lagrangian for the system of fields and matter which
depends upon the positions and velocities of the particles, and the potentials
and field quantities descriptive of the field. From the standpoint of the field,
the Lagrangian is best regarded as the volume integral of a Lagrangian density
L. Thus, the effect of an arbitrary variation of the vector potential is expressed
by

δaL =

∫

(dr)

(

∂L
∂a

· δa +
∂L
∂b

· ∇ × δa − 1

c

∂L
∂e

· δȧ
)

=

∫

(dr)

(

δL

δa
· δa +

δL

δȧ
· δȧ
)

, (1.51)

in which we have introduced the variational derivatives,

δL

δa
=
∂L
∂a

+ ∇ × ∂L
∂b

, (1.52a)

δL

δȧ
= −1

c

∂L
∂e

, (1.52b)

and discarded a surface integral by requiring that all variations vanish on the
spatial boundary of the region, as well as at the initial and terminal times t0
and t1. In a similar fashion,

δφL =

∫

(dr)

(

∂L
∂φ

δφ− ∂L
∂e

· ∇δφ

)

=

∫

(dr)
δL

δφ
δφ , (1.53)

with
δL

δφ
=
∂L
∂φ

+ ∇ ·
(

∂L
∂e

)

, (1.54)

provided the time derivative of the scalar potential is absent in the Lagrangian.
These relations, (1.51) and (1.53), expressed in terms of variational deriva-
tives, are formally analogous to the variation of a Lagrangian associated with
a material particle’s coordinates,

δra
L =

∂L

∂ra
· δra +

∂L

∂va
· d

dt
δra . (1.55)

Therefore, the condition expressing the stationary character of
∫ t1

t0
dt L for

variations of ra, subject to the vanishing of all variations at the termini,

d

dt

∂L

∂va
=

∂L

∂ra
, (1.56)

has a formally similar aspect for variations of a and φ,
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∂

∂t

δL

δȧ
=
δL

δa
, 0 =

δL

δφ
. (1.57)

Hence, the field equations deduced from a variational principle are

−∇ × ∂L
∂b

=
1

c

∂

∂t

∂L
∂e

+
∂L
∂a

, ∇ · ∂L
∂e

= −∂L
∂φ

, (1.58)

which are identical with the Maxwell-Lorentz equations (1.19a) if

L =
e2 − b2

2
− ρφ+

1

c
j · a . (1.59)

The Lagrangian thus consists of a part involving only the field quantities,

Lf =

∫

(dr)
e2 − b2

2
, (1.60)

a part containing the coordinates of both field and matter,

Lfm = −
∫

(dr)

(

ρφ− 1

c
j · a

)

= −
∑

a

qa

(

φ(ra) − 1

c
va · a(ra)

)

, (1.61)

and a part involving only material quantities, which, as we shall verify, is for
nonrelativistic particles

Lm =
∑

a

1

2
mav

2
a . (1.62)

(For the relativistic generalization see Problem 1.32.) The Lagrangian form
of the ath particle’s equation of motion (1.56) is

d

dt

(

mava +
qa
c

a(ra)
)

= −qa∇ra

(

φ(ra) − 1

c
va · a(ra)

)

, (1.63)

where we see the appearance of the canonical momentum,

πa = mava +
qa
c

a(ra) . (1.64)

However,

d

dt
a(ra, t) =

∂

∂t
a + va · ∇a =

∂

∂t
a − va × b + ∇(va · a) , (1.65)

for in computing the time derivative, the implicit dependence of the particle’s
position on the time cannot be ignored. It is thus confirmed that the Lorentz
force law (1.45b) holds,

d

dt
mava = qa

(

e(ra) +
1

c
va × b(ra)

)

. (1.66)
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1.3 Conservation Theorems

The various conservation laws, those of charge, energy, linear momentum, and
angular momentum, are consequences of the invariance of Hamilton’s principle
under certain transformations. These are, respectively, gauge transformations,
temporal displacements, spatial translations, and spatial rotations. A gauge
transformation (1.49) induces the variation

δa = −∇ψ , δφ =
1

c

∂

∂t
ψ , (1.67a)

δe = δb = 0 , (1.67b)

whence

δL =

∫

(dr)

(

∇ · ∂L
∂a

− 1

c

∂

∂t

∂L
∂φ

)

ψ +
1

c

d

dt

∫

(dr)
∂L
∂φ

ψ , (1.68)

from which we can infer from (1.59) that the local charge conservation equa-
tion,

∇ ·
(

c
∂L
∂a

)

+
∂

∂t

(

−∂L
∂φ

)

= ∇ · j +
∂

∂t
ρ = 0 , (1.69)

must be a consequence of the field equations, for
∫ t1

t0
dt L is stationary with

respect to arbitrary independent variations of a and φ.
The value of

∫ t1
t0

dt L is in no way affected by an alteration of the time
origin,

∫ t1−δt

t0−δt

dt L(t+ δt) −
∫ t1

t0

dt L(t) = 0 , (1.70)

where δt is an arbitrary constant. We may conceive of the time displacement as
a variation of the system’s coordinates which consists in replacing the actual
values at time t by the actual values which the system will assume at time
t + δt. The statement of invariance with respect to the origin of time now
reads

∫ t1

t0

dt δL = δt (L(t1) − L(t0)) = δt

∫ t1

t0

dt
dL

dt
, (1.71)

where δL is the consequence of the variations

δa = δt ȧ , δφ = δt φ̇ , δra = δtva , (1.72a)

δL = δt

[

∫

(dr)

(

δL

δa
· ȧ +

δL

δȧ
· ä +

δL

δφ
· φ̇
)

+
∑

a

(

∂L

∂ra
· va +

∂L

∂va
· v̇a

)

]

.

(1.72b)

In writing this expression for δL various surface integral have been discarded.
This can no longer by justified by the statement that the variation vanishes at
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the surface of the integration region, for it is not possible to satisfy this condi-
tion with the limited type of variation that is being contemplated. Rather, it
is assumed for simplicity that the volume integration encompasses the entire
field. On rearranging the terms of δL and employing the Lagrangian equations
of motion (1.56), (1.57), we obtain

δL = δt
d

dt

(

∫

(dr)
δL

δȧ
· ȧ +

∑

a

∂L

∂va
· va

)

, (1.73)

from which it follows from (1.71) that

E =

∫

(dr)
δL

δȧ
· ȧ +

∑

a

∂L

∂va
· va − L (1.74)

is independent of time. It is easily verified from (1.59) that E is the total
energy of the system,

E =

∫

(dr)
e2 + b2

2
+
∑

a

1

2
mav

2
a . (1.75)

The Lagrangian is unaltered by an arbitrary translation of the position
variable of integration, that is, if r is replaced by r + δr, with δr an arbitrary
constant vector. The region of integration must be suitably modified, of course,
but this need not be considered if the entire field is included, for the limits
of integration are then effectively infinite. Under this substitution, the matter
part of the Lagrangian, which corresponds to the Lagrange density Lm(r) =
Lm(r) δ(r − ra), is replaced by Lm(r + δr) δ(r + δr − ra). Hence, viewed as
the variation

δa = (δr · ∇)a , δφ = (δr · ∇)φ , δra = −δr , (1.76)

the translation of the space coordinate system induces a variation of

δL =

∫

(dr)

[

δL

δa
· (δr · ∇)a +

δL

δȧ
· (δr · ∇)ȧ +

δL

δφ
(δr · ∇)φ

]

−
∑

a

∂L

∂ra
· δr , (1.77)

which must be zero. As a consequence of the Lagrangian equations of motion
(1.56), (1.57) and the relations

(δr · ∇)a = ∇(δr · a) + b× δr , (1.78a)

∇ ·
(

δL

δȧ

)

= −1

c
∇ ·

(

∂L
∂e

)

= −1

c
ρ , (1.78b)

we obtain
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δL = − d

dt

[

−
∫

(dr)
δL

δȧ
× b +

∑

a

(

∂L

∂va
− 1

c
qaa(ra)

)

]

· δr = 0 . (1.79)

Therefore,

P = −
∫

(dr)
δL

δȧ
× b +

∑

a

(

∂L

∂va
− 1

c
qaa(ra)

)

=

∫

(dr)
1

c
e× b +

∑

a

mava , (1.80)

the total linear momentum of the system, must be constant in time.
Similar considerations are applicable to a rotation of the coordinate sys-

tem. The infinitesimal rotation

r → r + ǫ × r (1.81)

induces the variation (because a, like ra, is a vector)

δa = (ǫ × r · ∇)a − ǫ × a , δφ = (ǫ × r · ∇)φ , δra = −ǫ × ra , (1.82)

which must leave the Lagrangian unaltered,

δL =

∫

(dr)

{

δL

δa
· [(ǫ · r × ∇)a − ǫ × a] +

δL

δȧ
· [(ǫ · r × ∇)ȧ − ǫ × ȧ]

+
δL

δφ
(ǫ · r × ∇)φ

}

−
∑

a

ǫ · ra × ∂L

∂ra
−
∑

a

ǫ · va × ∂L

∂va
= 0 .

(1.83)

However, again using (1.78b),

δL = − d

dt

[

−
∫

(dr) r ×
(

δL

δȧ
× b

)

+
∑

a

ra ×
(

∂L

∂va
− 1

c
qaa(ra)

)

]

· ǫ ,

(1.84)
in consequence of the identity

(ǫ · r × ∇)a − ǫ × a = ∇(ǫ · r × a) + b× (ǫ × r) . (1.85)

Therefore,

L =

∫

(dr) r ×
(

1

c
e × b

)

+
∑

a

mara × va , (1.86)

the total angular momentum, is unchanged in time.
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1.4 Delta Function

Preparatory to determining the fields produced by given distributions of
charge and current, it is useful to consider some properties of the δ func-
tion, and in particular, its connections with the Fourier integral theorem. A
one-dimensional δ function is defined by the statements

∫ x1

x0

dx δ(x) =

{

1 , x1 > 0 > x0 ,
0 , x1 > x0 > 0 , or 0 > x1 > x0 ,

(1.87)

that is, the integral vanishes unless the domain of integration includes the
origin, when the value assumed by the integral is unity. The function δ(x−x′)
has corresponding properties relative to the point x′. Particular examples of
functions possessing these attributes in the limit are

δ(x) = lim
ǫ→0

1

π

ǫ

x2 + ǫ2
, (1.88a)

δ(x) = lim
ǫ→0

1

ǫ
e−πx2/ǫ2 . (1.88b)

An integral representation for δ(x) can be constructed from the formulæ

1

π

ǫ

x2 + ǫ2
=

1

2π

∫ ∞

−∞

dk eikxe−ǫ|k| , (1.89a)

1

ǫ
e−πx2/ǫ2 =

1

2π

∫

dk eikxe−ǫ2k2/4π . (1.89b)

If we perform the limiting operation under the integral sign, either expression
yields

δ(x) =
1

2π

∫ ∞

−∞

dk eikx =
1

π

∫ ∞

0

dk cos kx . (1.90)

The three-dimensional δ function already introduced (1.5) is correctly rep-
resented by

δ(r) = δ(x)δ(y)δ(z) , (1.91)

for δ(r) certainly vanishes unless x, y, and z are simultaneously zero, and the
integral over any volume enclosing the origin is unity. More generally,

δ(r − r′) = δ(x− x′)δ(y − y′)δ(z − z′) . (1.92)

The representation for δ(r), obtained by multiplying individual integrals (1.90)
for the one-dimensional delta functions can be regarded as an integral ex-
tended over the entirety of the space associated with the vector k,

δ(r) =
1

(2π)3

∫

(dk) eik·r . (1.93)

The functional representations mentioned previously, (1.7a), (1.7b), are con-
sequences of the formulæ
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1

π2

ǫ

(r2 + ǫ2)2
=

1

(2π)3

∫

(dk) eik·re−ǫk , (1.94a)

1

ǫ3
e−πr2/ǫ2 =

1

(2π)3

∫

(dk) eik·re−ǫ2k2/4π . (1.94b)

An arbitrary function of a coordinate x can be represented by a linear
superposition of δ functions,

f(x) =

∫ ∞

−∞

dx′ δ(x− x′)f(x′) , (1.95)

for the entire contribution to the integral comes from the point x′ = x. On
employing the integral representation (1.90) for δ(x− x′), we obtain

f(x) =
1

2π

∫ ∞

−∞

dk eikx

∫ ∞

−∞

dx′ e−ikx′

f(x′) , (1.96)

which states the possibility of constructing an arbitrary function from the
elementary periodic function eikx – the Fourier integral theorem. The corre-
sponding statements in three dimensions are

f(r) =

∫

(dr′) δ(r − r′)f(r′)

=
1

(2π)3

∫

(dk) eik·r

∫

(dr′) e−ik·r′f(r′) , (1.97)

while a function of space and time is represented by

f(r, t) =

∫

(dr′) dt′ δ(r − r′)δ(t− t′)f(r′, t′)

=
1

(2π)4

∫

(dk) dω ei(k·r−ωt)

∫

(dr′) dt′ e−i(k·r′−ωt′)f(r′, t′) .(1.98)

Thus, an arbitrary function f(r, t) can be synthesized by a proper su-
perposition of the functions exp[i(k · r − ωt)], which are the mathematical
descriptions of plane waves, harmonic disturbances propagating in the direc-
tion of the vector k, with a space periodicity length or wavelength λ = 2π/|k|,
and a time periodicity or period T = 2π/ω.

1.5 Radiation Fields

The treatment of an electrodynamic problem involves two preliminary stages;
the evaluation of the fields produced by a given array of charges moving in
a prescribed fashion, and the determination of the motion of a charge acted
on by a given electromagnetic field. The correct solution of the problem is
obtained when these two aspects of the situation are consistent, that is, when
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the charges move in such a way that the fields they generate produce precisely
this state of motion. We turn to a discussion of the first stage, the calculation
of the fields produced by a given distribution of charge and current.

The auxiliary quantities, the vector and scalar potentials, have been intro-
duced in order to satisfy identically the second set of field equations (1.19b).
Determining equations for the potentials are obtained on substituting the rep-
resentations (1.48) for e and b in the first set of equations (1.19a), with the
result

(

∇2 − 1

c2
∂2

∂t2

)

φ = −1

c

∂

∂t

(

∇ · a +
1

c

∂

∂t
φ

)

− ρ , (1.99a)

(

∇2 − 1

c2
∂2

∂t2

)

a = ∇

(

∇ · a +
1

c

∂

∂t
φ

)

− 1

c
j . (1.99b)

It is always possible to impose the condition

∇ · a +
1

c

∂

∂t
φ = 0 , (1.100)

for if this quantity does not vanish, one can, by a suitable gauge transfor-
mation, introduce new potentials for which the condition is valid. Thus if a′,
φ′ are obtained from a and φ by a gauge transformation associated with the
function ψ, as in (1.49)

∇ · a′ +
1

c

∂

∂t
φ′ = ∇ · a +

1

c

∂

∂t
φ−

(

∇2 − 1

c2
∂2

∂t2

)

ψ , (1.101)

and ψ can always be chosen to produce the desired result. With this restric-
tion upon the potentials, which is referred to as the Lorentz condition, the
determining equations for the potentials become

(

∇2 − 1

c2
∂2

∂t2

)

φ = −ρ , (1.102a)

(

∇2 − 1

c2
∂2

∂t2

)

a = −1

c
j . (1.102b)

It should be noted that the potentials are still not unique, for a gauge trans-
formation, with the scalar function ψ satisfying

(

∇2 − 1

c2
∂2

∂t2

)

ψ = 0 (1.103)

is compatible with the Lorentz condition.
The charge and current densities, as prescribed functions of the space and

time coordinates, can be represented in terms of plane waves as in (1.98).
Thus,

ρ(r, t) =
1

(2π)4

∫

(dr′) dt′
∫

(dk) dω eik·(r−r
′)−iω(t−t′)ρ(r′, t′) . (1.104)



20 1 Maxwell’s Equations

The advantage of this Fourier integral representation is that a particular so-
lution for the potentials can be constructed by inspection. For example, from
(1.102a),

φ(r, t) =
1

(2π)4

∫

(dk) dω

∫

(dr′) dt′
eik·(r−r

′)−iω(t−t′)

k2 − ω2/c2
ρ(r′, t′) . (1.105)

As a first step in the simplification of this result, consider the Green’s function

G(r) =

∫

(dk)

(2π)3
eik·r

k2 − ω2/c2
, (1.106)

which is a solution of the differential equation
(

∇2 +
ω2

c2

)

G(r) = −δ(r) . (1.107)

Upon introducing polar coordinates in the k space, we obtain

G(r) =
1

(2π)3

∫

dθ sin θ 2π k2dk
eikr cos θ

k2 − ω2/c2
=

1

2π2r

∫ ∞

0

k dk
sin kr

k2 − ω2/c2
,

(1.108)
or, equivalently,

G(r) = − i

8π2r

∫ ∞

−∞

dk

(

eikr

k − ω/c
+

eikr

k + ω/c

)

. (1.109)

An essential complication can no longer be ignored; the integrand becomes
infinite at k = ±ω/c. The difficulty can be avoided in a purely formal manner
by supposing that 1/c has a small imaginary part which will be eventually
be allowed to vanish. If the imaginary part of 1/c is positive,2 the integrand,
considered as a function of the complex variable k, has a simple pole at ω/c in
the upper half-plane, and a simple pole at −ω/c in the lower half-plane. The
path of integration along the real axis can be closed by an infinite semicircle
drawn in the upper half-plane without affecting the value of the integral, since
r is positive. Within this closed contour the integrand is everywhere analytic
save at the simple pole at k = ω/c. Hence, by the theorem of residues,

G(r) =
eiωr/c

4πr
. (1.110)

If the imaginary part of 1/c is negative, the position of the poles are reflected
in the real axis, and the pole at k = −ω/c lies in the upper half-plane. For
this situation,

G(r) =
e−iωr/c

4πr
. (1.111)

2 This is equivalent to distorting the k contour to avoid the poles by passing below
the pole at +ω/c, and above the pole at −ω/c.
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It can be directly verified that the two functions e±iωr/c/(4πr) are solutions
of the differential equation (1.107) for G(r). It must be shown that (∇2 +
ω2/c2)e±iωr/c/(4πr) has the properties of −δ(r), which will be achieved on
demonstrating that

∫

(dr)

(

∇2 +
ω2

c2

)

e±iωr/c

4πr
= −1 (1.112)

for any region of integration that includes the origin. It is sufficient to consider
a sphere of arbitrary radius R. Thus, we are required to prove that

R2 d

dR

(

e±iωR/c

R

)

+
ω2

c2

∫ R

0

r dr e±iωr/c = −1 , (1.113)

which is easily checked. It is apparent, then, that the difficulty encountered by
the Fourier integral method arises from the existence of two solutions for G(r)
and, in consequence, for the potentials. Which of these solutions to adopt can
only be decided by additional physical considerations.

Tentatively choosing (1.110), we obtain from (1.105)

φ(r, t) =
1

2π

∫

dω (dr′) dt′
eiω|r−r

′|/c−iω(t−t′)

4π|r − r′| ρ(r′, t′) . (1.114)

The integral with respect to ω is recognized as that of a delta function,

φ(r, t) =

∫

(dr′) dt′
δ (t′ − t+ |r − r′|/c)

4π|r − r′| ρ(r′, t′) , (1.115)

and if the integration with respect to t′ is performed,

φ(r, t) =

∫

(dr′)
ρ (r′, t− |r − r′|/c)

4π|r− r′| . (1.116)

This result expresses the scalar potential at the point r and time t in terms
of the charge density at other points of space and earlier times, the time
interval being just that required to traverse the spatial separation at the
speed c. The formula thus contains a concise description of the propagation
of electromagnetic fields at the speed of light. Evidently, had the solution
e−iωr/c/(4πr) been adopted for G(r), the evaluation of the potential at a time
t would have involved a knowledge of the charge density at later times. This
possibility must be rejected, for it requires information which, by the nature
of the physical world, is unavailable.3 The corresponding solution of (1.102b)
for the vector potential, in its several stages of development, is

3 However, it is actually possible to use advanced Green’s functions, with suitable
boundary conditions, to describe classical physics. See [11]. This led Feynman to
the discovery of the causal or Feynman propagator. See Problem 1.37.
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a(r, t) =
1

2π

∫

dω (dr′) dt′
eiω|r−r

′|/c−iω(t−t′)

4π|r− r′|
1

c
j(r′, t′)

=

∫

(dr′) dt′
δ (t′ − t+ |r − r′|/c)

4π|r − r′|
1

c
j(r′, t′)

=
1

c

∫

(dr′)
j (r′, t− |r − r′|/c)

4π|r − r′| . (1.117)

These solutions for the vector and scalar potentials, the so-called retarded
potentials, satisfy the Lorentz condition. This is most easily demonstrated
with the form the potentials assume before the integration with respect to
the time t′. The quantity δ (t′ − t+ |r − r′|/c) /(4π|r − r′|) involves only the
difference of time and space coordinates. Therefore derivatives with respect to
t or r can be replaced by corresponding derivatives acting on t′ and r′, with
a compensating sign change. Hence, with a suitable integration by parts,

∇ · a(r, t) +
1

c

∂

∂t
φ(r, t) =

1

c

∫

(dr′) dt′
δ (t′ − t+ |r − r′|/c)

4π|r − r′|

×
(

∇
′ · j(r′, t′) +

∂

∂t′
ρ(r′, t′)

)

= 0 , (1.118)

in consequence of the conservation of charge, (1.14).
As a particular example, consider a point charge moving in a prescribed

fashion, that is, its position r(t) and velocity v(t) are given functions of time.
The charge and current densities are, accordingly, represented by

ρ(r, t) = q δ(r − r(t)) , j(r, t) = q v(t)δ(r − r(t)) . (1.119)

The most convenient form for the potentials is, again, that involving the delta
function. On integrating over the space variable r′, we obtain from (1.115)
and (1.117)

φ(r, t) =
q

4π

∫

dt′
δ(t′ − t+ |r− r(t′)|/c)

|r − r(t′)| , (1.120a)

a(r, t) =
q

4π

∫

dt′
v(t′)

c

δ(t′ − t+ |r − r(t′)|/c)
|r− r(t′)| . (1.120b)

The entire contribution to these integrals comes from the time τ defined by

t− τ =
|r − r(τ)|

c
, (1.121)

which is evidently the time at which an electromagnetic field, moving at the
speed c, must leave the position of the charge in order to reach the point of
observation r at the time t. In performing the final integration with respect
to t′, one must be careful to observe that dt′ is not the differential of the δ
function’s argument, and that therefore a change of variable is required. Thus
calling
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η(t′) = t′ − t+
|r − r(t′)|

c
, (1.122)

we obtain for the scalar potential

φ(r, t) =
q

4π

(

dt′

dη

|r − r(t′)|

)

t′=τ

. (1.123)

However,
dη

dt′
= 1 − v(t′)

c
· r − r(t′)

|r − r(t′)| , (1.124)

and therefore

φ(r, t) =
q

4π

1

|r − r(τ)| − v(τ) · (r − r(τ))/c
. (1.125)

Similarly,

a(r, t) =
q

4π

1
cv(τ)

|r − r(τ)| − v(τ) · (r − r(τ))/c
=

v(τ)

c
φ(r, t) . (1.126)

The direct evaluation of the fields from these potentials, the so-called
Liénard-Wiechert potentials, is rather involved, for the retarded time τ is
an implicit function of r and t. The calculation proceeds more easily by first
deriving the fields from the δ function representation of the potentials and
then performing the integration with respect to t′. However, no details will be
given. (See Problems 1.7, 1.8.)

1.5.1 Multipole Radiation

A problem of greater interest is that of a distribution of charge with a spa-
tial extension sufficiently small so that the charge distribution changes only
slightly in the time required for light to traverse it. Otherwise expressed, the
largest frequency ν = ω/2π that occurs in the time Fourier decomposition of
the charge density must be such that νa/c ≪ 1, where a is a length, repre-
sentative of the system’s linear dimensions. Equivalently, the corresponding
wavelength λ = c/ν must be large in comparison with a. Molecular systems
(a ∼ 10−8 cm) possess this property for optical and even for ultraviolet fre-
quencies (λ ∼ 10−6 cm), and the condition λ ≫ a is more than adequately
fulfilled for wavelengths in the microwave region (λ ∼ 1 cm). Under these con-
ditions, the difference in retarded time t−|r− r′|/c between various parts of a
molecule is of secondary importance, and to a first approximation all retarded
times can be identified with that of some fixed point in the molecule, which
we shall choose as the origin of coordinates. In a more precise treatment, the
difference between t − |r − r′|/c and t − r/c can be taken into account by
expansion of the charge and current densities, as follows:
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ρ(r′, t−|r− r′|/c) = ρ(r′, t−r/c)+(r−|r− r′|)1

c

∂

∂t
ρ(r′, t−r/c)+. . . . (1.127)

However, we shall be concerned primarily with the field at a great distance
from the center of the molecule (considered to be at rest). Rather than intro-
duce our approximation in two steps, we proceed more directly by regarding
r′ as small in comparison with r wherever it occurs in the retarded potential
expressions. It must not be forgotten that two approximations are thereby
introduced, r ≫ a and λ≫ a. With these remarks, we insert the Taylor series
expansion

ρ(r′, t− |r − r′|/c)
|r− r′| =

(

1 − r′ · ∇ +
1

2
(r′ · ∇)2 − . . .

)

ρ(r′, t− r/c)

r
(1.128)

in the retarded scalar potential integral (1.116)

4πφ(r, t) =

∫

(dr′) ρ(r′, t− r/c)

r
− ∇ ·

∫

(dr′) r′ ρ(r′, t− r/c)

r

+
1

2
∇∇:

∫

(dr′) r′r′ρ(r′, t− r/c)

r
− . . . . (1.129)

In terms of the total charge, electric dipole moment, and electric quadrupole
moment dyadic,4

q =

∫

(dr) ρ(r, t) , (1.131a)

d(t) =

∫

(dr) r ρ(r, t) , (1.131b)

Q(t) =

∫

(dr) r r ρ(r, t) , (1.131c)

the first three terms of the expansion are

4πφ(r, t) =
q

r
− ∇ · d(t− r/c)

r
+

1

2
∇∇:

Q(t− r/c)

r
. (1.132)

The notation A:B for dyadics designates the scalar product,

A:B =
∑

i,j

AijBji . (1.133)

In a similar fashion, the expansion of the vector potential (1.117) is

4 Usually, the electric quadrupole dyadic is defined by

Q = 3

∫

(dr)
(

rr −
1

3
r2

1

)

ρ (1.130)

so that Tr Q = 0. See (2.46).
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4πa(r, t) =
1

c

∫

(dr′) j(r′, t− r/c)

r
−∇· 1

c

∫

(dr′) r′ j(r′, t− r/c)

r
+. . . . (1.134)

Two terms suffice to give the same degree of approximation as the first three
terms in the scalar potential expansion. The integrals can be re-expressed in
convenient form with the aid of the conservation equation,

∇ · j +
∂

∂t
ρ = 0 . (1.135)

Multiplying (1.135) by r and rearranging the terms, we obtain

∂

∂t
rρ+ ∇ · (jr) = j . (1.136)

The process of volume integration, extended over the entire region occupied
by the charge distribution, yields

∫

(dr) j(r, t) =
d

dt
d(t) . (1.137)

Corresponding operations with r replaced by the dyadic rr give, successively,

∂

∂t
rr ρ+ ∇ · (jrr) = rj + jr , (1.138a)

∫

(dr) (rj(r, t) + j(r, t)r) =
d

dt
Q(t) . (1.138b)

Now,

rj =
rj + jr

2
+

rj − jr

2
=

rj + jr

2
− 1

2
1 × (r × j) , (1.139)

and therefore

4πa(r, t) =
1

c

∂

∂t

d(t− r/c)

r
+∇×m(t− r/c)

r
− 1

2c

∂

∂t
∇ · Q(t− r/c)

r
, (1.140)

where

m(t) =
1

2c

∫

(dr) r × j(r, t) (1.141)

is the magnetic dipole moment of the system.
For a neutral molecule, q = 0, and the dominant term in the scalar poten-

tial expansion (1.132) is that associated with the electric dipole moment. The
quadrupole moment contribution is smaller by a factor of the same magnitude
as the larger of the two ratios a/λ, a/r, and will be discarded. The electric
dipole moment term predominates in the vector potential expansion (1.140)
save for static or quasistatic phenomena when the magnetic dipole moment
effect may assume importance. The quadrupole moment term will also be dis-
carded here. Thus, under the conditions contemplated, the potentials can be
expressed in terms of two vectors, the electric and magnetic Hertz vectors,
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Πe(r, t) =
1

4πr
d(t− r/c) , (1.142a)

Πm(r, t) =
1

4πr
m(t− r/c) , (1.142b)

by

φ(r, t) = −∇ ·Πe(r, t) , (1.143a)

a(r, t) =
1

c

∂

∂t
Πe(r, t) + ∇ × Πm(r, t) . (1.143b)

The consistency of the approximations for the vector and scalar potentials is
verified on noting that these expressions satisfy the Lorentz condition (this
statement also applies to the discarded quadrupole moment terms). The elec-
tric and magnetic field intensities are given by

e = ∇∇ ·Πe −
1

c2
∂2

∂t2
Πe −

1

c

∂

∂t
∇ × Πm , (1.144a)

b = ∇ × (∇ × Πm) +
1

c

∂

∂t
∇ × Πe

= ∇∇ ·Πm −∇2Πm +
1

c

∂

∂t
∇ × Πe . (1.144b)

The Hertz vectors can be considered as the retarded solutions of the dif-
ferential equations, because −∇21/r = 4πδ(r),

(

∇2 − 1

c2
∂2

∂t2

)

Πe(r, t) = −d(t)δ(r) ≡ −d(r, t) , (1.145a)

(

∇2 − 1

c2
∂2

∂t2

)

Πm(r, t) = −m(t)δ(r) ≡ −m(r, t) . (1.145b)

The fields associated with the Hertz vectors can be regarded as produced by
point distributions of charge and current. Since

∇ × b− 1

c

∂

∂t
e = −1

c

∂

∂t

(

∇2 − 1

c2
∂2

∂t2

)

Πe − ∇ ×
(

∇2 − 1

c2
∂2

∂t2

)

Πm

=
1

c

∂

∂t
p(r, t) + ∇ × m(r, t) (1.146)

and

∇ · e = ∇ ·
(

∇2 − 1

c2
∂2

∂t2

)

Πe = −∇ · d(r, t) , (1.147)

the required distributions are

ρeff = −∇ · d(r, t) , (1.148a)

jeff =
∂

∂t
p(r, t) + c∇ × m(r, t) . (1.148b)
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Notice that the dipole moments of this effective distribution are those of the
original molecule,

∫

(dr) r ρeff = −
∫

(dr) r∇ · d(r, t) =

∫

(dr)d(r, t)

= d(t) , (1.149a)

1

2c

∫

(dr) r × jeff =
1

2

∫

(dr) r × [∇ × m(r, t)] =

∫

(dr)m(r, t)

= m(t) . (1.149b)

Use has been made of the two identities

r∇ · A = ∇ · (Ar) − A , (1.150a)

r × (∇ × A) = ∇(A · r) − ∇ · (rA) + 2A , (1.150b)

and of the fact that
∫

(dr) r δ(r) = 0 . (1.151)

Therefore, the actual charge-current distribution in the molecule can be re-
placed by the effective point distribution without altering the values of the
moments, or of the field at a sufficient distance from the molecule (r ≫ a,
λ≫ a).

Although the fields deduced from the effective distribution do not agree
with the actual fields in the neighborhood of the molecule, nevertheless cer-
tain average properties of the fields are correctly represented. We shall show
that the field intensities averaged over the volume contained in a sphere that
includes the molecule, but is small in comparison with all wavelengths, is
given correctly by the fields calculated from the effective distribution. It will
follow, a fortiori, that the same property is maintained for any larger region
of integration. In the immediate vicinity of the molecule, the potentials can
be calculated, to a first approximation, by ignoring the finite propagation
velocity of light,

φ(r, t) =

∫

(dr′)
ρ(r′, t)

4π|r− r′| , (1.152a)

a(r, t) =
1

c

∫

(dr′)
j(r′, t)

4π|r − r′| . (1.152b)

The fields are, correspondingly,

e(r, t) = −∇

∫

(dr′)
ρ(r′, t)

4π|r− r′| =

∫

(dr′) ρ(r′, t)∇′ 1

4π|r− r′| , (1.153a)

b(r, t) = ∇ × 1

c

∫

(dr′)
j(r′, t)

4π|r − r′| =
1

c

∫

(dr′) j(r′, t) × ∇
′ 1

4π|r − r′| .

(1.153b)
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The vector potential contribution to the electric field has been discarded in
comparison with the electrostatic field. These fields are to be integrated over
the volume VS of a sphere which includes the entire molecule. The center of
the sphere bears no necessary relation to the molecule. The integration for
both fields requires an evaluation of

∫

VS

(dr)

4π|r− r′| , (1.154)

extended over the sphere. On remarking that

∇′2 1

4π|r − r′| = −δ(r − r′) (1.155)

as the static limit of the differential equation satisfied by G(r), (1.107), it is
observed that

∇′2

∫

VS

(dr)

4π|r − r′| = −1 , (1.156)

provided that the point r′ is within the sphere, as required by the assumption
that the sphere encompasses the entire molecule. If the origin of coordinates
is temporarily moved to the center of the sphere, it may be inferred that

∫

VS

(dr)

4π|r − r′| = −r
′2

6
+ ψ(r′) , (1.157)

where ψ(r′) is a solution of Laplace’s equation,

∇′2ψ(r′) = 0 , (1.158)

which, by symmetry, can depend only on the distance to the center of the
sphere. Such a function must be a constant, for on integration of Laplace’s
equation over a sphere of radius r, and employing the divergence theorem,
one obtains

4πr2
d

dr
ψ(r) = 0 , (1.159)

which establishes the constancy of ψ(r) within the sphere. Therefore,

∇
′

∫

VS

(dr)

4π|r − r′| = −1

3
r′ , (1.160)

which is independent of the radius of the sphere. It immediately follows from
(1.153a) and (1.153b) that

∫

VS

(dr) e(r, t) = −1

3

∫

(dr′) r′ ρ(r′, t) , (1.161a)

∫

VS

(dr)b(r, t) =
1

3c

∫

(dr′) r′ × j(r′, t) , (1.161b)
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The vector r′ is referred to the center of the sphere as origin. To return to
the origin of coordinates established at the center of the molecule, r′ must
be replaced by r′ + R, where R is the position vector of the center of the
molecule relative to the center of the sphere. Finally, then, using (1.137),

∫

VS

(dr) e(r, t) = −1

3
d(t) , (1.162a)

∫

VS

(dr)b(r, t) =
2

3
m(t) +

1

3c
R × ḋ(t) , (1.162b)

provided that the molecule is electrically neutral. The essential result of this
calculation is that the volume integrals depend only upon the moments of
the system, not upon the detailed charge-current distribution. Now the ef-
fective point distribution (1.148a), (1.148b) predicts the correct values of the
moments, and must therefore lead to the same integrated field intensities.

The explicit calculation of the fields derived by (1.144a), (1.144b) from the
electric Hertz vector (1.142a) gives

4πe =

(

3r r · d
r5

− d

r3

)

+
1

c

(

3r r · ḋ
r4

− ḋ

r2

)

+
1

c2
r× (r × d̈)

r3
,

(1.163a)

4πb = −1

c

r × ḋ

r3
− 1

c2
r × d̈

r2
. (1.163b)

The electric dipole moment and its time derivative are to be evaluated at the
retarded time t− r/c. The relative orders of magnitude of the three types of
terms in the electric field are determined by the ratio r/λ. For r/λ ≪ 1 (but
r/a ≫ 1), the electric field is essentially that of a static dipole. However, if
r/λ≫ 1, the last term in both fields predominates, and

4πe =
1

c2
r × (r × d̈)

r3
=

1

c2
n × (n× d̈)

r
, (1.164a)

4πb = − 1

c2
r × d̈

r2
= − 1

c2
n× d̈

r
, (1.164b)

where
n =

r

r
(1.165)

is a radial unit vector. Note that at these large distances, the electric and
magnetic fields are transverse to the direction of observation and to each
other, and equal in magnitude,

e = b× n , b = n× e . (1.166)

Therefore, the energy flux vector
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S = c e× b = n c e2 =
n

4πr2
(n × d̈)2

4πc3
(1.167)

is directed radially outward from the molecule and the net amount of energy
which leaves a sphere of radius r per unit time is

P =

∮

dS n · S =

∫ π

0

2πr2 sin θ dθ

4πr2
(d̈)2

4πc3
sin2 θ =

2

3c3
1

4π
(d̈)2 . (1.168)

This expression is independent of the radius of the sphere, except insofar as
the radius r determines the time of emission of the field under observation,
and represents the rate at which the molecule loses energy by radiation. In
the particular situation of a dipole moment that oscillates harmonically with
a single frequency,

d(t) = d0 cosωt , (1.169)

the rate of emission of energy is

P =
2

3c3
ω4

4π
(d0)

2 cos2 ω(t− r/c) , (1.170)

which fluctuates about the average value

P =
ω4

3c3
1

4π
(d0)

2 . (1.171)

The fields generated by a magnetic dipole moment can be obtained from
the electric dipole fields by the substitutions5

d → m , e → b , b → −e , (1.172)

that is

4πb =

(

3r r ·m
r5

− m

r3

)

+
1

c

(

3r r · ṁ
r4

− ṁ

r2

)

+
1

c2
r × (r × m̈)

r3
,

(1.173a)

4πe =
1

c

r × ṁ

r3
+

1

c2
r× m̈

r2
, (1.173b)

and correspondingly, the rate of radiation is

P =
2

3c3
1

4π
(m̈)2 . (1.174)

5 See (1.144a) and (1.144b), and the fact that the Hertz vectors satisfy the wave
equation away from the origin, (1.145a) and (1.145b). This symmetry is an ex-
ample of electromagnetic duality, which is further explored in Problems 1.23,
1.25.
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If oscillating electric and magnetic dipoles are present simultaneously, the
total energy radiated per unit time is the sum of the individual radiation
rates, for the outward energy flux is

n · S = c e2 =
1

4πr2
1

4πc3

[

(n× d̈)2 + (n × m̈)2 + 2n · (d̈ × m̈)
]

, (1.175)

and the interference term disappears on integration over all directions of emis-
sion.

1.5.2 Work Done by Charges

It is instructive to calculate the rate of radiation by a system in a quite
different manner, which involve evaluating the rate at which the charges in the
molecule do work on the field and thus supply the energy which is dissipated
in radiation. The precise statement of the consequence of energy conservation
is obtained from (1.44a)

−
∫

V

(dr) e · j =
d

dt
E + P , (1.176)

in which the integration is extended over a region V encompassing the
molecule, and from (1.20a)

E =

∫

V

(dr)
e2 + b2

2
(1.177)

is the total electromagnetic energy associated with the molecule, while from
(1.20b), the integral extended over the surface S bounding V

P =

∮

S

dS n · c e× b (1.178)

is the desired amount of energy leaving the system per unit time. This ap-
proach to the problem has the advantage of determining E and P simultane-
ously. In the evaluation of

∫

(dr) e · j, we are concerned only with the fields
within the region occupied by charge. The effect of retardation, or the fi-
nite speed of light, is slight and the difference between the charge density at
the retarded time and at the local time can be expressed by a power series
expansion, with 1/c regarded as a small parameter,

ρ(r′, t− |r − r′|/c) = ρ(r′, t) − |r − r′|
c

∂

∂t
ρ(r′, t)

+
|r − r′|2

2c2
∂2

∂t2
ρ(r′, t) − |r − r′|3

6c3
∂3

∂t3
ρ(r′, t) + . . . .

(1.179)

Hence, from (1.116),
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4πφ(r, t) =

∫

(dr′)
ρ(r′, t)

|r − r′| +
1

2c2
∂2

∂t2

∫

(dr′) |r − r′|ρ(r′, t)

− 1

6c3
∂3

∂t3

∫

(dr′) |r − r′|2ρ(r′, t) + . . . , (1.180)

on employing charge conservation to discard the second term in the expansion.
To the same order of approximation it is sufficient to write from (1.117)

4πa(r, t) =
1

c

∫

(dr′)
j(r′, t)

|r− r′| −
1

c2
d

dt

∫

(dr′) j(r′, t)

=
1

c

∫

(dr′)
j(r′, t)

|r− r′| −
1

c2
d2

dt2
d(t) , (1.181)

which uses (1.137), for we have consistently retained terms of the order 1/c3

in the electric field intensity, from (1.48)

4πe(r, t) = −∇

∫

(dr′)
ρ(r′, t)

|r − r′| −
1

2c2
∂2

∂t2

∫

(dr′)
r − r′

|r − r′|ρ(r
′, t)

+
1

3c3
∂3

∂t3

∫

(dr′) (r − r′)ρ(r′, t) − 1

c2
∂

∂t

∫

(dr′)
j(r′, t)

|r − r′|

+
1

c3
d3

dt3
d(t) . (1.182)

Now,

∂

∂t

∫

(dr′) (r − r′)ρ(r′, t) = r
d

dt

∫

(dr′) ρ(r′, t) − d

dt

∫

(dr′) r′ ρ(r′, t)

= − d

dt
d(t) (1.183)

and

∂

∂t

∫

(dr′)
r − r′

|r − r′|ρ(r
′, t) = −

∫

(dr′)
r− r′

|r− r′|∇
′ · j(r′, t) = −

∫

(dr′)
j(r′, t)

|r − r′|

+

∫

(dr′)
(r − r′)(r − r′) · j(r′, t)

|r − r′|3 , (1.184)

whence

4πe(r, t) = −∇

∫

(dr′)
ρ(r′, t)

|r − r′| −
1

2c2
∂

∂t

∫

(dr′)

[

j(r′, t)

|r − r′|

+
(r − r′)(r − r′) · j(r′, t)

|r− r′|3
]

+
2

3c3
d3

dt3
d(t) . (1.185)

Therefore, in (1.176) we encounter
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−4π

∫

(dr) j · e =
d

dt

[

1

2

∫

(dr) (dr′)
ρ(r, t)ρ(r′, t)

|r − r′|

+
1

4c2

∫

(dr) (dr′)

{

j(r, t) · j(r′, t)
|r− r′|

+
(r − r′) · j(r, t) (r − r′) · j(r′, t)

|r − r′|3
}

]

− 2

3c3
ḋ(t) · ˙̈

d(t) ,

(1.186)

for
∫

(dr) j(r, t) · ∇
∫

(dr′)
ρ(r′, t)

|r − r′| = −
∫

(dr) (dr′)∇ · j(r, t) ρ(r
′, t)

|r− r′|

=
d

dt

1

2

∫

(dr) (dr′)
ρ(r, t)ρ(r′, t)

|r − r′| ,

(1.187)

and we have used (1.137) again. As a last rearrangement,

− 2

3c3
ḋ · ˙̈

d = − d

dt

(

2

3c3
ḋ · d̈

)

+
2

3c3
(d̈)2 . (1.188)

The integral −
∫

(dr) j · e has thus been expressed in the desired form (1.176)
as the time derivative of a quantity plus a positive definite expression which
is to be identified with the rate of radiation,

P =
2

3c3
1

4π
(d̈)2 . (1.189)

Correct to terms of order 1/c2 the electromagnetic energy of the molecule is6

E =
1

2

∫

(dr) (dr′)
ρ(r, t)ρ(r′, t)

4π|r − r′|

+
1

4c2

∫

(dr) (dr′)

(

j(r, t) · j(r′, t)
4π|r− r′| +

(r − r′) · j(r, t) (r − r′) · j(r′, t)
4π|r − r′|3

)

.

(1.191)

Magnetic dipole radiation first appears in that approximation which retains
terms of the order 1/c5, with the expected result (1.174).

6 It is the presence of the third term in (1.191) that results in the attraction between
like currents, described by the magnetostatic energy

E = −
1

2c2

∫

(dr) (dr′)
J(r) · J(r′)

4π|r − r′|
. (1.190)

See [9], Chap. 33.
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1.6 Macroscopic Fields

The electromagnetic fields within material bodies, composed of enormous
numbers of individual particles, are extremely complicated functions of posi-
tion and time, on an atomic scale. Even if the formidable task of construct-
ing the fields in a given situation could be performed, the description thus
obtained would be unnecessarily elaborate, for it would contain information
that could not be verified by our gross, macroscopic measuring instruments
which respond only to the effects of many elementary particles. A macroscopic
measurement of the instantaneous value of the field at a point is, in reality, a
measurement of an average field within a region containing many atoms and
extending over an interval of time large in comparison with atomic periods.
It is natural, then, to seek an approximate form of the theory, so devised that
the quantities which are the object of calculation are such averaged fields from
which microscopic inhomogeneities have been removed, rather than the actual
fields themselves. Such a program can be carried out if a length L and a time
interval T exist which are small in comparison with distances and times in
which macroscopic properties change appreciably, but large compared with
atomic distances and times. These conditions are adequately satisfied under
ordinary circumstances, failing only for matter of very low density or peri-
odic fields of extremely short wavelength. Any quantity exhibiting enormous
microscopic fluctuations, such as a field intensity, can be replaced by an mi-
croscopically smoothed quantity possessing only macroscopic variations by an
averaging process conducted over a temporal interval T and a spatial region
of linear extension L. Thus

f(r, t) =
1

V

∫

|r′|<L/2

(dr′)
1

T

∫ T/2

−T/2

dt′ F (r + r′, t+ t′) (1.192)

defines a space-time average of the function f(r, t), extended through the time
interval from t−T/2 to t+T/2, and over a spatial region of volume V which
may be considered a sphere of diameter L drawn about the point r. This
averaging process has the important property expressed by

∇f(r, t) = ∇f(r, t) ,
∂

∂t
f(r, t) =

∂

∂t
f(r, t) , (1.193)

providing that the averaging domains are identical for all points of space and
time. Hence, any linear differential equation connecting field variables can be
replaced by formally identical equations for the averaged fields. Thus, in terms
of the averaged field intensities,

e(r, t) =
√
ǫ0 E(r, t) , b(r, t) =

1√
µ0

B(r, t) , (1.194)

the averaged Maxwell-Lorentz equations (1.19a), (1.19b) read
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∇ × 1

µ0
B =

∂

∂t
ǫ0E +

√
ǫ0 j , ∇ · ǫ0E =

√
ǫ0 ρ , (1.195a)

∇ × E = − ∂

∂t
B , ∇ ·B = 0 , (1.195b)

in which we have introduced two new constants, ǫ0 and µ0, related by

ǫ0µ0 =
1

c2
, (1.196)

in order to facilitate the eventual adoption of a convenient system of units (SI)
for macroscopic applications. Such averaged equations will be meaningful to
the extent that they are independent of the precise size of the space-time
averaging regions, within certain limits. This will be true if the sources of the
macroscopic fields E and B, namely the averaged charge and current densities,
can be expressed entirely in terms of the macroscopic field quantities and other
large scale variables (temperature, density, etc.).

The actual charge distribution within a material medium arises not only
from the charges within neutral atoms and molecules, which we shall call the
bound charge, but also from relatively freely moving electrons (conduction
electrons) and the charged atoms (ions) from which they have been removed.7

The latter source of charge will be termed the free charge. We have already
shown that the true bound charge-current distribution within a molecule can
be replaced by an equivalent point distribution without affecting the values
of integrated fields, or averaged fields, within a region large compared to the
molecule. Hence, for the purpose of evaluating ρ and j, the actual charge-
current distribution can be written as the sum of a free charge distribution
and the equivalent point distributions for the neutral molecules (and the ions,
save for their net charge), given in (1.148a) and (1.148b),

ρ(r, t) = ρf (r, t) − ∇ · d(r, t) , (1.197a)

j(r, t) = jf (r, t) +
∂

∂t
d(r, t) + c∇ × m(r, t) , (1.197b)

where, summed over the molecules,

d(r, t) =
∑

a

da(t) δ(r − ra) , m(r, t) =
∑

a

ma(t) δ(r − ra) . (1.198)

The averaged charge and current densities will be expressed, in the same form,
in terms of averaged free charge and current densities and

d(r, t) = nd , m(r, t) = nm (1.199)

are the average dipole moments of a molecule within the smoothing region
(in addition to the time average, a statistical average among the molecules is

7 Holes in a semiconductor could also be contemplated.
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implied), multiplied by the average density n of molecules at the macroscopic
point in question. With the notation

ρf (r, t) =
1√
ǫ0
ρ(r, t) , jf (r, t) =

1√
ǫ0

J(r, t) , (1.200a)

d(r, t) =
1√
ǫ0

P(r, t) , m(r, t) =
√
µ0 M(r, t) (1.200b)

for the macroscopic quantities measuring the free charge and current densities,
and the electric and magnetic intensities of polarization (dipole moment per
unit volume),8 the averaged charge and current densities are

√
ǫ0 ρ = ρ− ∇ ·P , (1.201a)

√
ǫ0 j = J +

∂

∂t
P + ∇ × M . (1.201b)

Therefore, the first set of the averaged microscopic field equation (1.195a) –
the Maxwell equations – read

∇ × H =
∂

∂t
D + J , ∇ ·D = ρ , (1.202a)

where

H =
1

µ0
B − M , D = ǫ0E + P , (1.202b)

while the second set (1.195b) are unchanged. Thus the starting equations
(1.1a), (1.1b) are recovered.

We also record the SI forms of the energy, energy flux vector, and momen-
tum in vacuum (M = P = 0):

U =
1

2
(ε0E

2 + µ0H
2) , (1.203a)

S = E× H , (1.203b)

G = D × B . (1.203c)

The form of energy and momentum conservation in a medium is much more
subtle, and will be treated subsequently.

1.7 Problems for Chap. 1

Note – In these problems, and in following chapters, we will use E, B, and
A to denote the electric and magnetic fields, and the vector potential, both
in macroscopic and microscopic situations, and we will use Heaviside-Lorentz

8
P and M are also referred to as the electric polarization and the magnetization,
respectively.
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units for both, except in waveguide applications, which have a more engineer-
ing flavor. Again we remind the reader of the simple conversion factors nec-
essary to pass between SI, Heaviside-Lorentz, and Gaussian units, described
in the Appendix.

1. Verify the representations (1.7a) and (1.7b) for the three-dimensional
delta function. Alternatively, derive them from the Fourier representa-
tions (1.94a) and (1.94b).

2. Establish the identities (1.22a) and (1.22b), and then prove the conserva-
tion statements (1.21) in empty space.

3. Prove the local statements of field energy and momentum non-conservation
(1.44a) and (1.44b) from the inhomogeneous Maxwell equations (1.19a)
and (1.19b).

4. Show that the energy is given by (1.75) by inserting (1.59) into (1.74);
similarly, fill in the steps leading to (1.80) and (1.86).

5. Without reference to potentials, show that

−2
2E =

(

−∇ρ− 1

c2
∂

∂t
j

)

, (1.204a)

−2
2B =

1

c
∇ × j . (1.204b)

Here we have introduced the “d’Alembertian,” or wave operator,

2
2 = − ∂2

c2∂t2
+ ∇2 . (1.205)

Use the retarded solution of these equations to arrive at the asymptotic
radiation fields of a bounded current distribution. (Don’t forget charge
conservation, ∂

∂tρ+ ∇ · j = 0.)
6. Starting from the Liénard-Wiechert potentials (1.125) and (1.126), work

out ∂τ/∂t and ∇τ and so recognize that
{

φ
A

}

(r, t) =
q

4π

1

|r − r(τ)|

{

∂τ/∂t
1
c∂r(τ)/∂t

}

. (1.206)

Check that

(∇τ)2 −
(

1

c

∂

∂t
τ

)2

= 0 . (1.207)

7. Work out the magnetic field of a moving point charge e by differentiating
the δ-function form for the potentials, (1.120a) and (1.120b). Get the
radiation field part by considering only the derivative of the δ function,
and show that

B(r, t) ∼ − e

4πc2
1

|r − r(τ)|n × d2r(τ)

dt2
, where n =

r − r(τ)

|r − r(τ)| .
(1.208)

Note carefully that d2r(τ)/dt2 is not d2r(τ)/dτ2.
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8. What is the associated electric field as found by an analogous asymptotic
computation from the potentials? Compare with (1.206).

9. Let Ec be the instantaneous Coulomb field due to the charge density ρ.
Demonstrate that (1.204a) can be presented as

−2
2(E − Ec) = − 1

c2
∂

∂t

(

j +
∂

∂t
Ec

)

. (1.209)

Begin with the retarded solution of this equation and derive the expres-
sions for the electromagnetic energy and radiation power of a small current
distribution.

10. Use the radiation fields derived above to compute the energy flux at large
distances, per unit solid angle, for a point particle of charge e in terms
of the acceleration and velocity of the particle at the retarded time – the
emission time. Convert this energy per unit detection time into energy per
unit emission time to get the power radiated into a given solid angle,

dP

dΩ
=

e2

(4π)2c3

[

v̇2

(1 − n · v/c)3 + 2
n · v̇ 1

cv · v̇
(1 − n · v/c)4

−
(

1 − v2

c2

)

(n · v̇)2

(1 − n · v/c)5

]

. (1.210)

Show that this reduces to the formula for dipole radiation in the nonrel-
ativistic limit, v/c≪ 1. For another expression of this result, see (3.111).

11. Integrate (1.210) over all directions to arrive at the expected result.
12. Use the result (1.210) to show, for the situation of linear acceleration,

that is, when v̇ is in the same direction as v, which makes an angle θ with
respect to the direction of observation, that (β = v/c)

− d2E

dt dΩ

∣

∣

∣

∣

rad

=
e2

(4π)2c3

(

dv

dt

)2
sin2 θ

(1 − β cos θ)5
. (1.211)

Integrate this over all solid angles to arrive at the energy loss rate for this
circumstance.

13. Derive the dipole radiation formula for radiation emitted at a given fre-
quency,

dErad

dω
=

2

3π

1

4π

1

c3
|d̈(ω)|2. (1.212)

Apply this formula to an instantaneous collision of two particles, one with
mass m1 and charge e1, the second with mass m2 and charge e2 in the
center of mass frame (that is, the total momentum is zero). Let the an-
gle of scattering of either particle be θ. Ignoring radiation reaction, both
particles have the same momentum magnitude p before and after the col-
lision. What happens if e1/m1 = e2/m2? From the photon viewpoint, how
does the assumption that the kinetic energy of the particles is not changed
restrict the radiation frequencies to which your result can be applied?
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14. Consider a particle undergoing an instantaneous reversal in direction,
changing from velocity v to velocity −v in negligible time. Derive the
following formula for the number of photons with energy h̄ω emitted into
a frequency interval dω and into an element of solid angle dΩ making an
angle θ with respect to the direction specified by v: (α = e2/4πh̄c)

d2N

dΩ dω
=

α

4π2

1

ω

{

2
1 + β2

1 − (β cos θ)2

− (1 − β2)

[

1

(1 − β cos θ)2
+

1

(1 + β cos θ)2

]}

.(1.213)

15. What is the result of integrating (1.213) over all angles, for any β < 1.
Does your photon spectrum agree with the known result for β ≪ 1? What
does it become for β ≈ 1? Can you understand this result by looking at
the approximate form derived from (1.213) for β ≈ 1, θ ≪ 1, π − θ ≪ 1?

16. Now suppose the charged particle stops on impact. Find the analog of
the formula (1.213). Again, integrate it over all angles and look at the
limits of β ≪ 1 and β ≈ 1. Are the last two results what you would have
expected? Explain.

17. Point charges e and −e are created at r = 0, t = 0, and then move with
constant velocities v and −v, respectively. Derive the distribution in fre-
quency and angle of the emitted radiation. Describe the angular distribu-
tion for v/c ≈ 1. Repeat for one charge created at rest, the other with
velocity v.

18. Charge e is distributed uniformly over the surface of a sphere of radius a,
which is rotating about an axis with constant angular velocity ω. Compute
the power radiated, either by applying a general method or by considering
electric and magnetic dipole radiation.

19. A free electron at rest acted on by a light wave, and also the radiation
reaction force, is described by

mv̇ = eReEe−iωt +
1

4π

2

3

e2

c3
v̈ . (1.214)

Solve this equation to get the total scattering cross section, defined as
the ratio of the total power removed from the incident field, Ptot, to the
incident flux, |S|,

σtot =
Ptot

|S| . (1.215)

Express the cross section in terms of the so-called classical radius of the
electron, r0 = e2/4πmc2 and the reduced wavelength λ̄ = λ/(2π). What
is the limiting form for λ̄≪ r0?

20. Calculate the total cross section for the scattering of a plane wave by a
dielectric sphere, assuming that the wavelength is large compared to the
the radius of the sphere.
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21. Define a complex vector field by

F = E + iB , F∗ = E− iB . (1.216)

Identify the scalar, vector, and dyadic, given by

1

2
F∗ ·F ,

1

2i
F∗ × F , and

1

2
(FF∗ + F∗ F) , (1.217)

respectively. What happens to these quantities if F is replaced by e−iφF,
φ being a constant?

22. What magnetic field is described, almost everywhere, by the vector po-
tential

A(r) = ∇ × g

4π
n log(r − n · r) , (1.218)

where g is a constant?
23. Consider Maxwell’s equations with both electric (ρe, je) and magnetic

(ρm, jm) charges. Show that these equations retain their form under the
electromagnetic rotation (duality transformation) under which electric (E)
and magnetic (M) quantities are redefined according to

E → E cosφ+ M sinφ , M → M cosφ− E sinφ . (1.219)

Check that the generalized Lorentz force

F = e
(

E +
v

c
× B

)

+ g
(

B− v

c
× E

)

(1.220)

also retains its form under this rotation. Can you give a two-dimensional
geometrical interpretation of the latter fact? A uni-directional electro-
magnetic pulse [recall the discussion after (1.33)] is characterized by the
relations

E2 −B2 = 0 , E ·B = 0 . (1.221)

How do these properties respond to the electromagnetic rotation? For
general electromagnetic fields, how do U , G, and T respond to electro-
magnetic rotations?

24. From the Maxwell equations with both electric and magnetic charges con-
sidered in the previous problem, derive second order differential equations
for E and for B. Show that

E = −∇φe −
1

c

∂

∂t
Ae − ∇ × Am , (1.222a)

B = −∇φm − 1

c

∂

∂t
Am + ∇ × Ae . (1.222b)

and exhibit the differential equations for these potentials in the Lorentz
gauge, and in the radiation gauge.
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25. Solve for the above potentials in some gauge, and find the asymptotic
radiation field. Now what is the relationship between E and B? Construct
the spectral-angular distribution of the radiated power. How do it change
under the duality transformation (1.219)?

26. A point magnetic charge g is at rest, at the origin. A point electric charge
e, carried by a particle of mass m is in motion about the electric charge.
What is the Newton-Lorentz equation of motion? By taking the moment
of this equation, verify that the conserved angular momentum is

J = r ×mv − eg

4πc

r

r
. (1.223)

What follows if quantum ideas about angular momentum are applied to
the radial component of J?

27. Consider the relative motion of two particles with masses and electric and
magnetic charges m1, e1, g1, and m2, e2, and g2, respectively. In deriving
the equation of relative motion, which involves the reduced mass, remem-
ber that moving electric (magnetic) charges produce magnetic (electric)
fields, but do not retain more than one factor of v1/c or v2/c. How do the
combinations of e’s and g’s in this equation respond to the electromagnetic
rotations 0f (1.219)? What is the conserved angular momentum?

28. A point magnetic charge g is located at the origin; a point electric chage
e is located at the fixed point R. What is the electromagnetic momentum
density G at an arbitrary position r? Write this vector as a curl. [This
implies that G is divergenceless; why is that?] Now construct the total
electromagnetic angular momentum as the integrated moment of G, sim-
plified by partial integration. You will recognize the remaining integral as
the electric field at R produced by a charge density proportional to 1/|r|.
Use spherical symmetry to solve the differential equation for the electric
field (follow the known example of constant density). Compare your result
with that of problem 26.

29. Consider Maxwell’s equations in vacuum with both electric and magnetic
charges and currents, ρe, je, ρm, and jm. Write the similar Maxwell equa-
tions satisfied by

E′ = E− Es , B′ = B − Bs , (1.224)

where Es and Bs are the respective static fields at time t produced by the
electric and magnetic charge densities at time t. That is,

∇ · Bs(r, t) = ρm(r, t) , ∇ × Bs(r, t) = 0 , (1.225)

and so on. What is ∇ · E′, ∇ · B′? Then what can you say about je, jm,
the currents that appear in the Maxwell equations obeyed by E′, B′? Use
that property to redefine E′ so that you are left with the Maxwell equa-
tions without magnetic charge and current. Recognize that these fields
can be constructed from a vector potential in the radiation gauge, and
then exhibit E and B.
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30. An electron moves at speed v ≪ c, in a circular orbit of radius r, about
an infinitely massive proton. Compute the rate of radiation – the rate of
energy loss – first, in terms of v and r, and then in terms of the electron
energy E (recall the virial theorem). Integrate the resulting differential
equation for E to find the time it takes an electron, initially of energy E0,
to fall into the nucleus of this classical hydrogen atom. State the collapse
time in seconds when the initial energy is that of the first Bohr orbit.
(Here is one reason for inventing quantum mechanics.)

31. Demonstrate that

Ucharges =
∑

a

δ(r − ra(t))Ea(t) , (1.226a)

Scharges =
∑

a

δ(r − ra(t))Ea(t)va(t) , (1.226b)

obey
∂

∂t
Uch + ∇ · Sch = j ·E . (1.227)

How does this lead to a direct proof of local total energy conservation?
Proceed similarly with

Gch =
∑

a

δ(r − ra)mava , (1.228a)

Tch =
∑

a

δ(r − ra)mavava . (1.228b)

32. Use the relativistic Lagrangian

L = −m0c
2
√

1 − v2/c2 − eφ+
e

c
v · A , v =

dr

dt
, (1.229)

to deduce the Einstein-Lorentz equation of motion.
33. The inference of the fundamental field equations discloses that imparting

a small velocity δv to the system changes the fields by

δB =
δv

c
× E , δE = −δv

c
× B . (1.230)

Show that Maxwell’s equations, first without charge and current, retain
their form if the meaning of the derivatives is also slightly altered:

δ(∇) = −δv
c

1

c

∂

∂t
, δ

(

1

c

∂

∂t

)

= −δv
c

· ∇ . (1.231)

Interpret this in terms of coordinate changes, δr, δt. [Hint: ∇t = 0,
∂r/∂t = 0.] Now show that all this remains true in the presence of charges,
provided

δj = δvρ , δρ =
δv

c
· 1

c
j , (1.232)
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the first of which is expected. This is a first suggestion of the Lorentz
transformations of Einstein relativity, which will be explored further in
Chap. 3.

34. Consider the stress dyadic T and the electromagnetic field of a unidirec-
tional light pulse. Show that

T ·E = 0 , T · B = 0 , T · E× B = UE× B . (1.233)

Thus, in this situation, E × B is an eigenvector of T with the eigenvalue
U , E and B are eigenvectors with the eigenvalue zero. Are these properties
consistent with TrT = U , (1.37)? What is the value of detT for the light
pulse field?

35. Prove that the last result is unique to the light pulse by demonstrating,
for an arbitrary field, that

detT = −U [U2 − (cG)2] ≤ 0 . (1.234)

[Hint: find the eigenvalues of T.] When does the equality sign hold? What
is the value of TrT2?

36. Work out the three dimensional Coulomb Green’s function in the vacuum,

G(r) =

∫

(dk)

(2π)3
eik·r

k2
, (1.235)

by writing
1

k2
=

∫ ∞

0

dλ e−λk2

, (1.236)

and then performing first the three integrations over the rectangular co-
ordinates of k. Repeat this calculation in four dimensions. Use your result
to verify explicitly that

∫ ∞

−∞

dx4G(x1, x2, x3, x4) = G(r) . (1.237)

Make this understandable by considering the four-dimensional differential
equation that G(x1, x2, x3, x4) obeys.

37. Besides the advanced and retarded Green’s functions considered in (1.106)
et seq., another important Green’s function is the casual or Feynman
Green’s function, defined by the 3 + 1 dimensional Fourier integral

G+(r − r′, t− t′) =

∫

(dk)

(2π)3
dω

2π

ei[k·(r−r
′)−ω(t−t′)]

k2 − ω2/c2 − iǫ
. (1.238)

Evaluate this as

G+ =
ic

4π2

1

(r − r′)2 − c2(t− t′)2 + iǫ
. (1.239)
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Write the analogous definition and form of G− = G∗
+. Check that

1

2
(G+ +G−) =

1

2
(Gret +Gadv) , (1.240)

where

Gret,adv =
δ(t− t′ ∓ |r − r′|/c)

4π|r − r′| . (1.241)

38. Solve the differential equation

(−∇2 + γ2)G(r) = δ(r) , (1.242)

by Fourier transformation followed by a contour integration.


