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A

Electromagnetic Units

The question of electromagnetic units has been a vexing one for students
of electromagnetic theory for generations, and is likely to remain so for the
foreseeable future. It was thought by the reformers of the 1930s, Sommer-
feld [29] and Stratton [30] in particular, that the rationalized system now
encompassed in the standard Système International (SI) would supplant the
older cgs systems, principally the Gaussian (G) and Heaviside-Lorentz (HL)
systems. This has not occurred. This is largely because the latter are far
more natural from a relativistic point of view; theoretical physicists, at least
of the high-energy variety, use nearly exclusively rationalized or unrational-
ized cgs units. The advantages of the two mentioned cgs systems (there are
other systems, which have completely fallen out of use) is that then elec-
tric and magnetic fields, E, D, B, H all have the same units, which is only
natural since electric and magnetic fields transform into each other under
Lorentz transformations. Electric permittivities and magnetic permeabilities
correspondingly are dimensionless. The reason for the continued survival of
two systems of cgs units lies in the question of “rationalization,” that is, the
presence or absence of 4πs in Maxwell’s equations or in Coulomb’s law. The
rationalized Heaviside-Lorentz system is rather natural from a field theoretic
point of view; but if one’s interest is solely electromagnetism it is hard not to
prefer Gaussian units.

In our previous book [9] we took a completely consistent approach of using
Gaussian units throughout. However, such consistency is not present in any
practitioner’s work. Jackson’s latest version of his classic text [10] changes
horses midstream. Here we have adopted what may appear an even more
schizophrenic approach: Where emphasis is on waveguide and transmission
line descriptions, we use SI units, whereas more theoretical chapters are writ-
ten in the HL system. This reflects the diverse audiences addressed by the
materials upon which this book is based, engineers and physicists.

Thus we must live with disparate systems of electromagnetic units. The
problem, however, is not so very complicated as it may first appear. Let us
start by writing Maxwell’s equations in an arbitrary system:
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∇ · D = k1ρ , (1.1a)

∇ ·B = 0 , (1.1b)

∇ × H = k2Ḋ + k1k2J , (1.1c)

−∇ × E = k2Ḃ , (1.1d)

while the constitutive relations are

D = k3E + k1P , (1.2a)

H = k4B − k1M . (1.2b)

The Lorentz force law is

F = e(E + k2v × B) . (1.3)

The values of the four constants in the various systems of units are displayed
in Table A.1. Here the constants appearing in the SI system have defined

Table A.1. Constants appearing in Maxwell’s equations and the Lorentz force law

in the different systems of units

constant SI HL Gaussian

k1 1 1 4π

k2 1 1

c

1

c

k3 ε0 1 1

k4
1

µ 0
1 1

values:

µ0 = 4π × 10−7 NA−2 , (1.4a)

1
√

ǫ0µ0

= c ≡ 299 792 458 m/s , (1.4b)

where the value of the speed of light is defined to be exactly the value given.
(It is the presence of the arbitrary additional constant µ0 which seems objec-
tionable on theoretical grounds.)

Now we can ask how the various electromagnetic quantities are rescaled
when we pass from one system of units to another. Suppose we take the SI
system as the base. Then, in another system the fields and charges are given
by

D = κDD
SI , E = κEE

SI , (1.5a)

H = κHH
SI , B = κBB

SI , (1.5b)

P = κPP
SI , M = κMM

SI , (1.5c)

ρ = κρρ
SI , J = κJJ

SI , (1.5d)
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We insert these into the Maxwell equations, and determine the κs from the
constants in Table A.1. For the Gaussian system, the results are

κD =

√

ε0

4π
, (1.6a)

κE =
1

√
4πε0

, (1.6b)

κH =
1

√
4πµ0

, (1.6c)

κB =

√

µ0

4π
, (1.6d)

κP = κρ = κJ =
√

4πε0 , (1.6e)

κM =

√

4π

µ0

. (1.6f)

The conversion factors for HL units are the same except the various 4πs are
omitted. By multiplying by these factors any SI equation can be converted to
an equation in another system.

Here is a simple example of converting a formula. In SI, the skin depth of
an imperfect conductor is given by (13.118),

δ =

√

2

µωσ
. (1.7)

Converting into Gaussian units, the conductivity becomes

σ =
J

E
→ 4πε

J

E
= 4πσ . (1.8)

Therefore, the skin depth becomes

δ →

√

2

4πεµσω
=

c
√

2πσω
, (1.9)

which is the familiar Gaussian expression.
Let us illustrate how evaluation works in another simple example. The so-

called classical radius of the electron is given in terms of the mass and charge
on the electron, m and e, respectively,

r0 =
e2

4πε0mc2

∣

∣

∣

∣

SI

=
e2

4πmc2

∣

∣

∣

∣

HL

=
e2

mc2

∣

∣

∣

∣

G

. (1.10)

where the charges related by κρ in (1.6e). Let us evaluate the formula in SI
and G systems:

r0 =
(1.602 × 10−19 C)2 × 10−7 NA−2

9.109 × 10−31 kg
= 2.818× 10−15 m , (1.11a)

r0 =
4.803 × 10−10 esu

9.109 × 10−28 g × (2.998 × 1010)2 cm/s
= 2.818 × 10−13 cm .(1.11b)
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It is even easier to evaluate this in terms of dimensionless quantities, such as
the fine structure constant

α =
e2

h̄c

∣

∣

∣

∣

G

=
e2

4πh̄c

∣

∣

∣

∣

HL

=
e2

4πε0h̄c

∣

∣

∣

∣

SI

=
1

137.036
. (1.12)

The classical radius of the electron is then proportional to the Compton wave-
length of the electron,

λc =
h̄c

mc2
= 3.8616× 10−13 m , (1.13)

where a convenient conversion factor is h̄c = 1.97327× 10−5 eV cm. Thus

r0 = αλc = 2.818× 10−15 m , (1.14)

which incidentally shows that the “classical radius” gives an unphysically
small measure of the “size” of an electron.

More discussion of electromagnetic units can be found in the Appendix of
[9]. For a rather complete discussion see [31].


