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Appendix A

Units

This book has been written entirely in the Gaussian system of units, which is
most convenient for theoretical purposes. However, for practical uses, and for
engineering applications, it is essential to make contact with the SI (Système
International) units, in which the meter, kilogram, second, and ampere are the
fundamental units. Fortunately, it is very easy to transform equations written
in the Gaussian system to the SI system. Here we will give that transformation,
as well as explain the Gaussian units. Thus, evaluations may be performed in
either system, or by using dimensionless quantities, such as the fine structure
constant.

The macroscopic Maxwell equations, (4.60), in Gaussian units, are

∇·D = 4πρ, ∇·B = 0,

∇×H =
1

c

∂

∂t
D +

4π

c
J, −∇×E =

1

c

∂

∂t
B, (A.1)

where

D = E + 4πP,

H = B− 4πM. (A.2)

In addition, the Lorentz force law is

F = e
(

E +
v

c
×B

)

. (A.3)

In contrast, the equations in the SI units are

∇·D = ρ, ∇·B = 0,

∇×H =
∂

∂t
D + J, −∇×E =

∂

∂t
B, (A.4)

where

D = ǫ0E + P,

H =
1

µ0

B− M. (A.5)
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Here the constants ǫ0 and µ0 have defined values,

ǫ0µ0 = c−2,

µ0 = 4π × 10−7, (A.6)

where the speed of light is now defined to be exactly

c = 299 792 458 m/s. (A.7)

In addition, the SI Lorentz force law is

F = e(E + v×B). (A.8)

To convert from the equations in Gaussian form to those in SI form, we
multiply each quantity in the former system by a suitable constant:

D → kDD, E → kEE,

H → kHH, B → kBB,

P → kP P, M → kMM,

ρ → kρρ, J → kJJ. (A.9)

Maxwell’s equations, together with the relation between D, E, and P, and
between H, B, and M, determine the ratios of all the k’s; the Lorentz force law
determines the overall scale. The results are

kD =

√

4π

ǫ0
, kE =

√
4πǫ0,

kH =
√

4πµ0, kB =

√

4π

µ0

,

kρ = kJ = kP =
1

√
4πǫ0

,

kM =

√

µ0

4π
. (A.10)

So this means that all that is necessary to convert a formula in Gaussian units
into the corresponding formula in SI units is to make the scaling of the electro-
magnetic quantities by the factors given in (A.10).

To find the actual values of electromagnetic quantities in the two systems,
such as the charge on the electron, it is further necessary to convert the length
and mass units,

x → λ1x, m → λ2m, (A.11)

where here, of course, λ1 = 102 and λ2 = 103. Thus, for example, an energy
scales by the factor λ2

1λ2, and hence the Coulomb potential of a electron at the
origin is, in the two systems, related by

e2

G

rG

= λ2

1λ2

e2

SI

4πǫ0rSI

, (A.12)
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Quantity SI Unit Corresponding number of Gaussian units

E V/m 1

3
× 10−4

φ V 1

300

e C 3 × 109

ρ C/m3 3 × 103

I A 3 × 109

J A/m2 3 × 105

P C/m2 3 × 105

D C/m2 12π × 105

σ mho/m 9 × 109 s−1

C F 9 × 1011 cm
B T 104 gauss
H A-turn/m 4π × 10−3 oersted
M A-turn/m 10−3

L H 1

9
× 10−11

Table A.1: Relation between SI electromagnetic units and Gaussian units. Here
3 is an approximation for 2.99792458.

where the subscripts now indicate the system of units. Thus

eG = eSI

1
√

4πǫ0

√

rG

rSI

√

λ2
1
λ2

= eSI

√
10−7c

√
102

√
107

= 1.602× 10−19 × 2.998 × 109 = 4.803× 10−10esu, (A.13)

where the name of the electrostatic unit is no longer of much significance. In
this way we can easily work out the equivalence between SI units and their
Gaussian counterparts, which are given in the Table.1

Finally, we turn to extraction of numbers from electromagnetic formulas,
since this sometimes leads to confusion. We illustrate three different methods.

• The formula in Gaussian units may be evaluated directly.

• The formula may be transformed to SI units, using (A.10), and then eval-
uated using familiar SI quantities.

• The formula may be evaluated by eliminating electromagnetic quantities
in favor of dimensionless numbers, and then the resulting formula is com-
puted with the aid of dimensional analysis. This method, which may

1It might be noted that the Gaussian system is an amalgamation of the earlier cgs electro-
static and electromagnetic systems of units. Here esu units are used for electrical quantities
and emu units are used for magnetic. Inductance sits on the fence: We use the esu unit, but
some authors use the emu unit, which differs by a factor of (3× 1010)−2. A single factor of c

gives the ratio of emu to esu units of charge. The other commonly used set of electrical units
is the Heaviside-Lorentz system, which is “rationalized” like the SI system, the units differing,
therefore, from the Gaussian units by various powers of 4π. See the reference at the end of
this Appendix for more detail.
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seem less direct, has the virtue that one need not keep track of factors of
c, which is merely a conversion factor between time and space intervals,
and is naturally set equal to unity in relativistic calculations.

We illustrate these three methods by evaluating the following formula, derived
in Problem 32.1, for the mean lifetime of the orbital motion of an electron,
having charge e and mass m, moving in a uniform magnetic field B, whose
motion decays due to the radiation emitted:

τ =
3m3c5

4e4B2
. (A.14)

Suppose B = 104 gauss. Then, in Gaussian units, where m = 9.11 × 10−28 g,
c = 3.00 × 1010 cm/s, and e = 4.80 × 10−10 esu, this evaluates to τ = 2.58 s.
On the other hand, we may convert the formula first to SI:

τ =
3πǫ0m

3c3

e4B2
. (A.15)

Now m = 9.11 × 10−31 kg, c = 3.00 × 108 m/s, and e = 1.60 × 10−19 C, so for
a magnetic field of 1T, we obtain, again, τ = 2.58 s.

The dimensionless method consists, first, in replacing the electric charge by
the fine structure constant,

α =
e2

h̄c
≈

1

137
, (A.16)

and the magnetic field is to be expressed in terms of its ratio to the characteristic
(or critical) field strength,

Bc =
m2c3

eh̄
= 4.41 × 1013gauss. (A.17)

Thus our formula becomes

τ =
3

4

(

Bc

B

)2
h̄

αmec2
, (A.18)

so, because h̄ = 6.58 × 10−22 MeV s, and mec
2 = 0.511 MeV, we get the same

result, τ = 2.58 s. Although this latter method may seem unnatural because it
introduces quantum quantities into a classical calculation, it has the virtue of
allowing the powers of h̄ and c to be determined at the end of the calculation
by elementary considerations of dimensional analysis. Here because mc2 has
dimensions of energy, exactly one factor of h̄ must be present in the numerator
to obtain a quantity having the dimensions of time.

This advantage is lost if one uses a purely classical method of eliminating e

and B, for example, by eliminating the former in favor of the electron mass in
terms of the classical electron radius, (45.6),

r0 =
e2

mc2
= 2.818× 10−13cm, (A.19)
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and expressing B in terms of the cyclotron frequency for a field B0 of 1 gauss,

ω0 =
eB0

mc
= 1.759 × 107rad/s, (A.20)

so that our formula becomes

τ =
3

4

c

r0ω
2
0

(

B0

B

)2

. (A.21)

This, of course, gives the same answer for B = 104 gauss, namely 2.58 s, but
now in terms of two dimensional quantities, r0 and ω0, instead of the one, m,
in the atomic system. The latter is obviously preferable.

For a rather complete discussion of the vexing issue of electromagnetic units,
the reader is referred to Francis B. Silsbee, Systems of Electrical Units, National
Bureau of Standards Monograph 56 (U. S. Government Printing Office, Wash-
ington, 1962).


