Physics 5163
Homework 4
Due Wednesday, March 4

February 23, 2009

1. Compute the partition function \(Z(\beta) \) for the classical one-dimensional harmonic oscillator defined by the Hamiltonian

\[
H = \frac{p^2}{2m} + \frac{1}{2} m \omega^2 q^2.
\]

Compare the result with that for the quantum harmonic oscillator discussed in class, in the high-temperature limit, \(\beta \to 0 \). Do they agree? What about Planck’s constant \(h \)?

2. Consider a relativistic particle for which the Hamiltonian is

\[
H = c \sqrt{p^2 + m^2 c^2} - m c^2.
\]

(a) Consider one-dimensional motion in an interval of length \(L \). Find the partition function in the extreme relativistic limit, \(p \gg mc \).

(b) Consider the same situation in general. Express your result in terms of the modified Bessel function,

\[
K_\nu(x) = \int_0^\infty e^{-z \cosh \theta} \cosh \nu \theta \ d\theta.
\]

Look up the behavior of \(K_\nu(z) \) for small \(z \) to reproduce the result of part b.

(c) Consider a relativistic particle in three dimensions, where it is confined to a box of volume \(V \). Find the partition function in the extreme relativistic limit.
(d) Repeat part c in general.

Problems in Pathria: 3.17, 3.18, 3.24, and 3.30.