Chapter 18

More about Fermions

Recall Stefan’s law for photons, Eq. (16.55), which gives the relation between the total energy and the temperature,

\[U_\gamma = \frac{8\pi V}{(2\pi\hbar c)^3} (kT)^4 \Gamma(4) \zeta(4). \]

We can similarly work out the corresponding relation for neutrinos. Because there is only one helicity state,

\[U_\nu = \sum_l \frac{\varepsilon_l}{e^{\beta \varepsilon_l} + 1} = \frac{4\pi V}{(2\pi)^3 \hbar c} \int_0^\infty dk \frac{k^3}{e^{\beta \hbar ck} + 1} = \frac{4\pi V}{(2\pi \hbar c)^3} (kT)^4 \frac{7}{8} \Gamma(4) \zeta(4), \]

which uses the evaluation

\[
\int_0^\infty dx \frac{x^{n-1}}{e^x + 1} = \int_0^\infty dx x^{n-1} e^{-x} \sum_{k=0}^\infty (-1)^k e^{-kx} \\
= \sum_{k=0}^\infty (-1)^k \int_0^\infty dx x^{n-1} e^{-(k+1)x} = \sum_{k=0}^\infty (-1)^k \frac{\Gamma(n)}{(k+1)^n} \\
= \sum_{k=0}^\infty \frac{\Gamma(n)}{(k+1)^n} - 2 \sum_{l=1}^\infty \frac{\Gamma(n)}{(2l)^n} \\
= \zeta(n) \Gamma(n) \left(1 - \frac{1}{2^{n-1}} \right).
\]

18.1 Temperature dependence of chemical potential

Let us define the Fermi distribution by

\[f(\varepsilon) = \frac{1}{e^{\beta (\varepsilon - \mu)} + 1}. \]
The number of Fermions is

\[N = \int_0^\infty d\varepsilon f(\varepsilon)g(\varepsilon) \equiv \int_0^\infty d\varepsilon N(\varepsilon), \]

(18.5)
in terms of the density of states \(s = 1/2 \)

\[g(\varepsilon) = \frac{4\pi(2m)^{3/2}}{(2\pi\hbar)^3}V\varepsilon^{1/2}. \]

(18.6)

As we have seen in Eq. (17.35), at \(T = 0 \),

\[N = \frac{2}{3}g(\varepsilon_F)\varepsilon_F, \]

(18.7)

with \(\varepsilon_F = \mu(0) \), so

\[g(\varepsilon_F) = \frac{3}{2}\frac{N}{\varepsilon_F}. \]

(18.8)

As the temperature increases from zero, particles are removed below the point at which the distribution equals \(1/2 \), \(\varepsilon = \mu \), and put above \(\mu \). Since the density of states increases with \(\varepsilon \), this must mean that \(\mu \) decreases. Let’s see this quantitatively as follows. Let \(g(\varepsilon) = \frac{d}{d\varepsilon}G(\varepsilon) \), where we choose \(G(0) = 0 \).

Then we can integrate by parts:

\[N = \int_0^\infty d\varepsilon f(\varepsilon)\frac{dG(\varepsilon)}{d\varepsilon} = -\int_0^\infty d\varepsilon \frac{df(\varepsilon)}{d\varepsilon}G(\varepsilon). \]

(18.9)

Now

\[-\frac{df(\varepsilon)}{d\varepsilon} = \frac{\beta e^{\beta(\varepsilon-\mu)}}{(e^{\beta(\varepsilon-\mu)}+1)^2} = \frac{\beta}{4\cosh^2 \frac{\beta(\varepsilon-\mu)}{2}}, \]

(18.10)

which is even about \(\mu \). Further note that

\[-\int_{-\infty}^{\infty} d\varepsilon \frac{df(\varepsilon)}{d\varepsilon} = f(-\infty) - f(\infty) = 1, \]

(18.11)

so, as \(\beta \to \infty \),

\[-\frac{df(\varepsilon)}{d\varepsilon} = \delta(\varepsilon - \mu), \]

(18.12)

which is obvious, because \(f(\varepsilon) \) becomes a step function as \(\beta \to \infty \).

Now expand \(G(\varepsilon) \) around \(\mu \):

\[G(\varepsilon) = G(\mu) + (\varepsilon - \mu)G'(\mu) + \frac{(\varepsilon - \mu)^2}{2}G''(\mu) + \ldots, \]

(18.13)

where the first derivative term gives nothing in (18.9) because \(f' \) is even about \(\mu \). The second derivative term gives

\[-\int_{0}^{\infty} d\varepsilon \frac{(\varepsilon - \mu)^2}{2} \frac{df(\varepsilon)}{d\varepsilon} = -\frac{1}{2\beta^2} \int_{-\infty}^{\infty} dx x^2 \frac{df(x)}{dx}. \]
18.2. SPECIFIC HEAT AT LOW TEMPERATURE

\[
-\frac{1}{\beta^2} \int_0^\infty x^2 \frac{df(x)}{dx} = \frac{2}{\beta^2} \int_0^\infty x f(x) dx \\
= \frac{2}{\beta^2} \int_0^\infty dx \frac{x}{e^x + 1} = \frac{2}{\beta^2} \frac{1}{2} \Gamma(2) \zeta(2) \\
= \frac{1}{\beta^2} \frac{\pi^2}{6},
\]

(18.14)

where in the first step we defined \(x = \beta (\varepsilon - \mu) \) and regarded \(\beta \mu \) as infinitely large and negative, and in the penultimate step we used Eq. (18.3). Thus, we conclude that

\[
N = G(\mu) + \frac{\pi^2}{6} (kT)^2 G''(\mu) + \ldots
\]

(18.15)

Now

\[
G(\varepsilon) = \frac{2}{3} \varepsilon^{3/2} A, \\
G''(\varepsilon) = \frac{1}{2} \varepsilon^{-1/2} A,
\]

(18.16, 18.17)

with

\[
A = \frac{4\pi(2m)^{3/2}}{(2\pi \hbar)^3} V,
\]

(18.18)

and so

\[
N = A \left[\frac{2}{3} \mu^{3/2} + \frac{\pi^2}{12} (kT)^2 \mu^{-1/2} + \ldots \right] = A \frac{2}{3} \varepsilon_F^{3/2},
\]

(18.19)

since the number of particles cannot change as the temperature changes. Therefore,

\[
\mu(T) = \varepsilon_F \left[1 - \frac{\pi^2}{12} \left(\frac{kT}{\varepsilon_F} \right)^2 + \ldots \right].
\]

(18.20)

18.2 Specific heat at low temperature

The internal energy can be written as

\[
U = \int_0^\infty d\varepsilon f(\varepsilon) g(\varepsilon) \varepsilon.
\]

(18.21)

Now let \(g(\varepsilon) \varepsilon = dG/d\varepsilon \), so again by integrating by parts

\[
U = -\int_0^\infty d\varepsilon \frac{df}{d\varepsilon} G(\varepsilon).
\]

(18.22)

Once again, expand \(G \) about \(\mu \), so by the same arguments

\[
U = G(\mu) + \frac{\pi^2}{6} (kT)^2 G''(\mu) + \ldots
\]

(18.23)
Here
\[
G(\varepsilon) = \frac{2}{5} A\varepsilon^{5/2}, \quad (18.24)
\]
\[
G''(\varepsilon) = \frac{3}{2} A\varepsilon^{1/2}, \quad (18.25)
\]
so
\[
U = \frac{2}{5} A\mu^{5/2} \left[1 + \frac{5\pi^2}{8} \left(\frac{kT}{\mu} \right)^2 + \ldots \right]. \quad (18.26)
\]
Inserting the temperature dependence for the chemical potential, Eq. (18.20),
\[
U = \frac{2}{5} A\varepsilon_F^{5/2} \left[1 - \frac{5\pi^2}{24} \left(\frac{kT}{\varepsilon_F} \right) + \ldots \right] \left[1 + \frac{5\pi^2}{8} \left(\frac{kT}{\mu} \right)^2 + \ldots \right]
\]
\[
= \frac{2}{5} A\varepsilon_F^{5/2} \left[1 + \frac{5\pi^2}{12} \left(\frac{kT}{\mu} \right)^2 + \ldots \right]. \quad (18.27)
\]
Then the specific heat is
\[
c_v = \frac{\partial U}{\partial T} = \frac{\pi^2}{3} A\varepsilon_F^{1/2} k^2 T. \quad (18.28)
\]
Write this in terms of the density of states at the Fermi surface,
\[
g(\varepsilon_F) = A\varepsilon_F^{1/2}; \quad (18.29)
\]
\[
c_v = \gamma T, \quad \gamma = \frac{\pi^2}{3} k^2 g(\varepsilon_F), \quad (18.30)
\]
or in view of Eq. (18.7),
\[
c_v = \frac{\pi^2 kT}{2 \varepsilon_F}. \quad (18.31)
\]
This result is so simple, there must be a more direct method to obtain it.
Recall,
\[
S = \frac{1}{T} (U - \mu N) + k \ln \chi, \quad (18.32)
\]
or in terms of discrete energy levels, and the notation
\[
f_j = \frac{1}{e^{\beta(\varepsilon_j - \mu)} + 1}, \quad (18.33)
\]
with \(\epsilon_j = \varepsilon_j - \mu, \)
\[
S = k\beta \sum_j f_j (\varepsilon_j - \mu) + k \sum_j \ln \left(1 + e^{-\beta(\varepsilon_j - \mu)} \right)
\]
\[
= k\beta \sum_j f_j \varepsilon_j + k \sum_j \left(1 + e^{-\beta\varepsilon_j} \right). \quad (18.34)
\]
Now for the specific heat at constant volume \((\delta W = 0)\)

\[
c_v = \left(\frac{\partial U}{\partial T}\right)_V \equiv \frac{\delta Q}{dT} = T \frac{dS}{dT} = -\beta \frac{dS}{d\beta}
\]

\[
= -k\beta \sum_j \left[\frac{df_j}{d\beta} \beta \epsilon_j + f_j \frac{d}{d\beta} (\beta \epsilon_j) - \frac{e^{-\beta \epsilon_j}}{e^{-\beta \epsilon_j} + 1} \frac{d}{d\beta} (\beta \epsilon_j) \right]. \tag{18.35}
\]

The last two terms cancel leaving us with

\[
c_v = -k\beta^2 \sum_j \frac{df_j}{d\beta} \beta \epsilon_j = \sum_j \epsilon_j \frac{df_j}{dT}, \tag{18.36}
\]

which might appear obvious, but it is not. The derivative appearing here is

\[
\frac{df_j}{d\beta} = \frac{d}{d\beta} \frac{1}{e^{\beta \epsilon_j} + 1} = -\frac{e^{\beta \epsilon_j}}{(e^{\beta \epsilon_j} + 1)^2} \frac{d}{d\beta} (\beta \epsilon_j)
\]

\[
= -\frac{1}{e^{\beta \epsilon_j} + 1} \left(1 - \frac{1}{e^{\beta \epsilon_j} + 1} \right) (\epsilon_j + \beta \frac{d\epsilon_j}{d\beta})
\]

\[
= -f_j (1 - f_j) \left(\epsilon_j + \beta \frac{d\epsilon_j}{d\beta} \right), \tag{18.37}
\]

or

\[
c_v = k\beta^2 \sum_j f_j (1 - f_j) \left(\epsilon_j^2 + \beta \epsilon_j \frac{d\epsilon_j}{d\beta} \right). \tag{18.38}
\]

Only the region near the Fermi surface contributes to the specific heat:

\[
f_j (1 - f_j) = \frac{1}{e^{\beta \epsilon_j} + 1} \frac{1}{e^{-\beta \epsilon_j} + 1} = -\frac{1}{\beta \frac{d\epsilon_j}{d\beta}} \rightarrow kT \delta(\epsilon), \tag{18.39}
\]

as \(T \rightarrow 0\) [see Eq. (18.12)].

Now put in the density of states:

\[
c_v = k\beta^2 g(\epsilon_F) \int_{-\infty}^{\infty} \epsilon e^2 f(1 - f)
\]

\[
= k g(\epsilon_F) \int_{-\infty}^{\infty} dx x^2 f(x)(1 - f(x)), \tag{18.40}
\]

where in the second line we set \(x = \beta \epsilon\). Note that in the scaled variable \(x\), since we are considering the limit \(\beta \rightarrow \infty\), we cannot regard \(f(x)(1 - f(x))\) as a \(\delta\) function, but we have already evaluated the latter integral at low temperature,

\[
- \int_{-\infty}^{\infty} dx x^2 \frac{df}{dx} = \frac{\pi^2}{3}. \tag{18.41}
\]

in Eq. (18.14). Thus,

\[
c_v = k^2 T g(\epsilon_F) \frac{\pi^2}{3}, \tag{18.42}
\]
which is the result (18.30). Here we neglected the term involving

$$\beta c \frac{de}{d\beta} = -\beta c \frac{d\mu}{d\beta} = cT \frac{d\mu}{dT} \approx 2c(\mu(T) - \varepsilon_r), \quad (18.43)$$

using Eq. (18.20), since the latter is an odd function of ϵ, while $f(1-f)$ is even.