
Chapter 9

Hamilton-Jacobi equations.

Poisson brackets. Canonical

Transformations

9.1 Hamilton-Jacobi equations

We have stated from the beginning that the general action priniciple is

δW = G1 − G2, G =
∑

a

paδqa − Hδt, (9.1)

where the generators arise from the endpoint variations. Suppose we now regard
the end time t1 = t to be a variable, and that the action is a function of that
time and of the dynamical variables at that time, qa(t) = qa, pa(t) = pa,

W = W (qa, pa, t). (9.2)

From the above generator statement,

∂W

∂t
= −H(qa, pq, t),

∂W

∂qa

= pa, (9.3)

so if these equations are combined, we obtain

∂W

∂t
+ H

(

qa,
∂W

∂qa

, t

)

= 0. (9.4)

This is the Hamilton-Jacobi equation. (W is conventionally called S.)
For a system with s degrees of freedom, there are s + 1 arbitrary constants

of integration. (A “complete integral” contains as many arbitrary constants
as there are variables.) Because the Hamilton-Jacobi equation involves only
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derivatives of the action, one of them must be an additive constant, so we may
write

W = f(q1, q2, . . . , qs; α1, α2, . . . , αs; t) + A, (9.5)

where the αs are the remaining constants of integration. Then, we define new
constants βa by

∂W

∂αa

= βa. (9.6)

This equation, together with
∂W

∂qa

= pa, (9.7)

allows us to completely solve the problem.
Let us illustrate this in the simple case of a one-dimensional harmonic oscil-

lator, described by the Lagrangian

L =
m

2
q̇2 − k

2
q2, (9.8)

and the Hamiltonian

H =
p2

2m
+

1

2
kq2. (9.9)

The Hamilton-Jacobi equation now reads

∂W

∂t
+

1

2m

(

∂W

∂q

)2

+
k

2
q2 = 0. (9.10)

Since the Hamiltonian in this case possesses no explicit time dependence, ∂W/∂t
must be a constant,

d

dt

(

∂W

∂t

)

= −dH

dt
= −∂H

∂t
= 0, (9.11)

which constant, naturally, we will −E. Then the Hamilton-Jacobi equation
implies

∂W

∂q
=

√

2m

(

E − k

2
q2

)

. (9.12)

This can be explicitly integrated,

W = −Et +
q

2

√

1 − k

2E
q2 +

1

2

√

2E

k
arcsin

(

√

k

2E
q

)

, (9.13)

but this is not necessary because only derivatives of the action are required. In
fact we now use Eq. (9.6) to write

β =
∂W

∂E
= −t + m

∫

dq
1

√

2m
(

E − k
2 q2
)

= −t +

√

m

k
arcsin

√

k

2E
q, (9.14)
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which is instantly inverted to

q =

√

2E

k
sin

√

k

m
(β + t), (9.15)

so we see β defines the amplitude at t = 0 (specifies the phase of the sinusoidal
motion), and then from the remaining equation (9.7) we get

p =
∂W

∂q
=

√

2m

(

E − k

2
q2

)

=
√

2mE cos

√

k

m
(β + t), (9.16)

as expected. Evidently E is indeed the conserved energy

E =
1

2m
p2 +

k

2
q2. (9.17)

9.2 Poisson brackets

For any two functions of dynamical variables, f({qa}, {pa}, t), g({qa}, {pa}, t),
the Poisson bracket is defined by (there are variations in notation and sign)

{f, g} =
∑

a

(

∂f

∂pa

∂g

∂qa

− ∂f

∂qa

∂g

∂pa

)

. (9.18)

We see immediately that

{qa, qb} = {pa, pb} = 0, {pa, qb} = δab. (9.19)

Moreover,

{qa, f} = − ∂f

∂pa

, {pa, f} =
∂f

∂qa

, (9.20)

and so, from Hamilton’s equations,

{H, qa} = q̇a, {H, pa} = ṗa. (9.21)

It follows that

{H, f} =
∑

a

(

∂f

∂pa

ṗa +
∂f

∂qa

q̇a

)

=
df

dt
− ∂f

∂t
, (9.22)

or
d

dt
f =

∂

∂t
f + {H, f}. (9.23)

The properties of the Poisson bracket are mostly quite obvious: It is anti-
symmetric,

{f, g} = −{g, f}, (9.24a)

the Poisson bracket with a constant vanishes,

{f, c} = 0, (9.24b)
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it is linear in the first and second argument,

{f + λg, h} = {f, h} + λ{g, h}, (9.24c)

it satisfies Leibnitz’ product rule in the sense

{fg, h} = f{g, h} + {f, h}g, (9.24d)

and it satisfies Jacobi’s identity,

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0. (9.24e)

A proof of the latter is given in Landau and Lifshitz.
The total derivative of a Poisson bracket is also distributive:

d

dt
{f, g} =

∂

∂t
{f, g} + {H, {f, g}}

=

{

∂f

∂t
, g

}

+

{

f,
∂g

∂t

}

− {f, {g, H}} − {g, {H, f}}

=

{

∂f

∂t
+ {H, f}, g

}

+

{

f,

{

∂g

∂t
+ {H, g}

}}

=

{

df

dt
, g

}

+

{

f,
dg

dt

}

. (9.25)

The latter means if f and g are both constants of the motion, so is their Poisson
bracket. This can be a useful way to construct constants of the motion.

Perhaps the most important aspect of the Poisson bracket is that it makes
an easy transition to quantum mechanics, where it becomes the commutator:

{ , } → i

h̄
[ , ], (9.26)

where for operators corresponding to physical observables,

[A, B] = AB − BA. (9.27)

Thus we recognize

{qa, pb} = −δab ⇒ [qa, pb] = ih̄δab, (9.28)

and all the above properties for the Poisson brackets pass over to corresponding
properties of the commutators, including the Jacobi identity.

9.3 Canonical Transformations

A point transformation is just a change in coordinates,

{qa}s
a=1 → {Qa({qb}, t)}s

a=1. (9.29)
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This does not alter the form of either Lagrange’s or Hamilton’s equations.
We want to consider a more general transformation,

Qa = Qa({q}, {p}, t), Pa = Pa({q}, {p}, t), (9.30)

which we will call canonical if Hamilton’s equations still hold, that it, there is a
transformed Hamiltonian H ′, a function of the new coordinates and momenta,
H ′({Q}, {P}, t), such that

Q̇a =
∂H ′

∂Pa

, Ṗa = − ∂H ′

∂Qa

. (9.31)

What’s required for this to be true is seen from the action principle, which in
terms of the old and new coordinates reads

δ

∫

(

∑

a

padqa

)

− Hdt = G1 − G2, δ

∫

(

∑

a

PadQa

)

− H ′dt = G′
1 − G′

2,

(9.32)
and the requirement that these be equivalent entails

∑

a

(padqa − PadQa) − (H − H ′)dt = dF. (9.33)

Here F ({q}, {p}, t) is the generating function of the canonical transformation,
which shifts the generators,

G′ = G + δF =
∑

a

PaδQa − H ′δt, (9.34)

and we have

pa =
∂F

∂qa

, Pa = − ∂F

∂Qa

, H ′ = H +
∂F

∂t
. (9.35)

If we want Φ({q}, {P}, t) as the generating function, do a Legendre trans-
formation,

d(F +
∑

a

PaQa) = dΦ({q}, {P}, t) =
∑

a

(padqa +QadPa)+(H ′−H)dt, (9.36)

so

pa =
∂Φ

∂qa

, Qa =
∂Φ

∂Pa

, H ′ = H +
∂Φ

∂t
. (9.37)

Note that if the generating function is independent of time, the Hamiltonian
is unchanged, it just needs to be expressed in terms of the new coordinates and
momenta, Qa and Pa.

A simple example of a canonical transformation is

Qa = pa, Pa = −qa, (9.38)
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which is generated by

F =
∑

a

qaQa. (9.39)

This shows there is no real distinction between what we call coordinates and
momenta, they are just conjugate dynamical variables.

An important property of a canonical transformation is that it preserves the
Poisson bracket,

{f, g}p,q = {f, g}P,Q. (9.40)

The proof is straightforward. Consider the time independent case, since the
effect of time in the transformation is just parametric. Then by use of the chain
rule

{f, g}p,q =
∑

a

(

∂f

∂pa

∂g

∂qa

− ∂f

∂qa

∂g

∂pa

)

=
∑

abc

[(

∂f

∂Pb

∂Pb

∂pa

+
∂f

∂Qb

∂Qb

∂pa

)(

∂g

∂Pc

∂Pc

∂qa

+
∂g

∂Qc

∂Qc

∂qa

)

−
(

∂f

∂Pb

∂Pb

∂qa

+
∂f

∂Qb

∂Qb

∂qa

)(

∂g

∂Pc

∂Pc

∂pa

+
∂g

∂Qc

∂Qc

∂pa

)]

=
∂f

∂Pb

∂g

∂Qc

{Pb, Qc}p,q +
∂f

∂Qb

∂g

∂Pc

{Qb, Pc}p,q

+
∂f

∂Pb

∂g

∂Pc

{Pb, Pc}p,q +
∂f

∂Qb

∂g

∂Qc

{Qb, Qc}p,q. (9.41)

Now if the canonical relations for the new coordinates and momenta hold,

{Qb, Qc}p,q = {Pb, Pc}p,q = 0, {Pb, Qc}p,q = δb,c, (9.42)

which must be true, since the new coordinates and momenta are just as good
as the old ones, then it follows that Eq. (9.40) is proved. In other words, the
p, q subscripts on the Poisson bracket are unnecessary. The Poisson bracket is
an invariant object, defined independently from the coordinate system. The
form is invariant. That this is true is fundamentally because the form of the
generators is unchanged by a canonical transformation. This is probably most
easily seen through the quantum-mechanical correspondence (9.28). The associ-
ated commutator is independent of the basis, and the structure of the canonical
commutation relations are determined by the generators.1

Finally, we note that time evolution is itself a canonical transformation. The
dynamical variables at one time qt, pt are mapped to the dynamical variables at
a later time, qt+τ , pt+τ . From the action principle, the difference between the
generators at the two times is

δW = G1 − G2 =
∑

a

((pa)t+τ δ(qa)t+τ − (pa)tδ(qa)t) − (Ht+τ − Ht)δt. (9.43)

1For further details, see my book, Schwinger’s Quantum Action Principle (Springer, 2015).
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This is the structure of a canonical transformation, as seen in Eq. (9.33), from
which we see that the generating function of this transformtion is the negative
of the action, −W .

9.4 Axial vector revisited

Let us return to the Coulomb problem, defined by the Hamiltonian

H =
p2

2m
− α

r
, (9.44)

Recall that not only is the angular momentum conserved,

L̇ = {H,L} = 0, L = r× p, (9.45)

which also says that H is a scalar under rotations, as well as the Hamiltonian,

dH

dt
= {H, H} = 0, (9.46)

but there is an additional, independent, conserved quantity which we called the
axial vector,

A = v × L − αr̂. (9.47)

Now in homework you proved that

{Li, rj} = −ǫijkrk, {Li, pj} = −ǫijkpk, (9.48)

so that for any vector constructed from r and p the same form must hold, so,
in particular we obtain the Poisson bracket relation for angular momentum

{Li, Lj} = −ǫijkLk. (9.49)

The same form must hold true for the axial vector,

{Li, Aj} = −ǫijkAk. (9.50)

To complete the story we need to evaluate the Poisson bracket {Ai, Aj}. To
this end, we first note that

A2 = (v × L) · (v × L) − 2αL · r̂ × v + α2 = v2L2 − 2α

mr
L2 + α2

=
2

m
HL2 + α2. (9.51)

(Incidentally, if we consider a circular orbit so that A = 0 (why?), this implies

H = −mα2

2L2
, (9.52)
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which if we import from quantum mechanics the notion that angular momentum
is quantized, L = nh̄, h̄ being Planck’s constant, we get Bohr’s formula for the
energy levels of the hydrogenic atom,

En = −mZ2e4

2n2h̄2 .) (9.53)

Now in spite of its name, A is a polar vector, while L is an axial vector,
meaning that under a spatial reflection, r → −r, p → −p,

A → −A, L → L, (9.54)

and therefore the form of the desired Poisson bracket is

{Ai, Aj} = CǫijkLk. (9.55)

So all we must do is determine the constant C. We can compute {A, A2} in
two ways. On the one hand,

{Ax, A2} = {Ax, A2
y + A2

z} = 2{Ax, Ay}Ay + 2{Ax, Az}Az

= 2C(LzAy − LyAz). (9.56)

But using Eq. (9.51) we can also write

{Ax, A2} =
2

m
H{Ax, L2} =

2H

m
(2{Ax, Lx}Lx + 2{Ax, Ly}Ly + 2{Ax, Lz}Lz)

= −4H

m
(AzLy − AyLz), (9.57)

so by comparing with Eq. (9.56) we have

C =
2H

m
, (9.58)

which is negative for a bound state (H < 0). Therefore we conclude that

{Ax, Ay} =
2H

m
Lz, (9.59)

or, generally,

{Ai, Aj} =
2H

m
ǫijkLk. (9.60)

Now we can present this result in another way, if we define

J(±) =
1

2

(

L ±
√

m

−2H
A

)

. (9.61)

We see immediately that

{J (±)
x , J (±)

y } = −1

2

(

Lz ±
√

m

−2H
Az

)

= −J (±)
z , (9.62)

while
{J (±)

x , J (∓)
y } = 0. (9.63)

So J(±) constitute two independent angular momenta. Thus the symmetry
group of the hydrogen atom is not the two-dimensionic rotation group, O3

∼= SU2

but O3 × O3
∼= SU2 × SU2

∼= O4.
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9.5 Problems for Chapter 9

1. Important in classical statistical mechanics is the concept of phase space.
If we have a system of s degrees of freedom, described by {qa}s

a=1, {pa}s
a=1,

the element of phase space is defined by

dΓ = dp1 . . . dpsdq1 . . . dqs. (9.64)

The total phase space of the system is just the integral of this:

Γ =

∫

dΓ. (9.65)

Show that this integral is invariant under a canonical transformation. You
may follow the argument given in Landau and Lifshitz, Sec. 46, but then
you must supply the details. Then, in view of the above remarks, show that
as the system evolves in time, the total phase-space volume is preserved.


