
Chapter 8

Constraints. Noninertial

coordinate systems

8.1 Constraints

Oftentimes we encounter problems with constraints. For example, for a ball
rolling on a floor without slipping, there is a constraint linking the velocity of the
center of mass of the ball with the angular velocity of the ball about its center
of mass. Often these constraints can be built into the choice of generalized
coordinates, but not always, and there are other cases where more insight is
obtained by imposing the constraint explicitly.

A holonomic constraint is one in which there is a condition between the
generalized coordinates, say

Φ({qa}) = 0. (8.1)

Suppose the constraint involves the velocities linearly,

∑

a

Fa({qa})q̇a = 0, (8.2)

or
∑

a

Fa({qa})dqa = 0. (8.3)

This is of the form of the holonomic constraint if Fa = ∂Φ

∂qa

and if the constraint
doesn’t explicitly depend on time; if this is not true, this is called a nonholonomic

constraint. For example, for a cylinder or a sphere rolling on a plane without
slipping, there is a constraint between the velocity of the center of mass V and
the angular velocity of rotation Ω, because the instantaeous point of contact is
always at rest,

V − aΩ× n = 0, (8.4)

where a is the radius of the cylinder or sphere, and n is a unit vector from the
axis of the cylinder or the center of the sphere and the point of contact. For a
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cylinder this is a holonomic constraint, because Ω = ẑφ̇, where φ is the angle of
rotation about the cylinder axis, and ẑ is the fixed direction of the axis of the
cylinder. The constaint can then be integrated:

d

dt
(X − aφ) = 0, or X − aφ = constant. (8.5)

Here X is the position of the center of the cylinder, which is free to move on
the plane in a direction perpendicular to its axis. The same constraint for a
sphere on a plane is nonholonomic, because the sphere, having but one point
of contract, is free to move in two dimensions, so the constraint cannot be
integrated.

One standard way of dealing with constraints is the method of Lagrange
multipliers. Because of the constraints, the coordinates in the action principle
are not independent, so we cannot perform independent variations. So what we
do is add to the variation of the action an additional term

δW +

∫ 1

2

dt
∑

α

λα({qa})
∑

a

Fαa({qa})δqa = 0. (8.6)

Here we have assumed there may be several constraints, labelled by the index
α. The λα’s are arbitrary functions of the coordinates. The constaints would
imply that the extra terms added to the action are zero, so we retain the original
statement of invariance if there are no endpoint variations. But now the idea is
to relax that constaint, but instead regard all the qa’s as independent, and then
let the resulting equations determine the functions λα, the Lagrange multipliers.
This then gives the following modified Lagrange equations,

ṗa =
∂L

∂qa

+
∑

α

λαFαa. (8.7)

There is exactly one Lagrange multiplier for each constraint, so there are exactly
the right number of equations to determine the motion and the multipliers.

Let us illustrate this with an elementary example, a sphere of mass m and
radius a rolling down an inclined plane without slipping. Here we are considering
motion in a single direction, so the nonholonomic remark above is irrelevant.
Let the plane angle to the horizontal be α and let the coordinate of the center
of mass of the sphere parallel to the inclined plane be x. If the angular velocity
of the sphere is ω = φ̇, the Lagrangian is

L =
1

2
mẋ2 + mgx sin α +

1

2
Iω2, (8.8)

where for a sphere, we recall, I = 2

5
ma2. Using the notation above for the

constraint ẋ−aφ̇, we have F1 = 1, F2 = −a, so the modified Lagrange equations
are

mẍ = mg sin α + λ,
2

5
ma2φ̈ = −λa. (8.9)
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Multiplying the first equation by a, adding, and using the constraint, we get
the familiar result,

7

5
ẍ = g sinα. (8.10)

We note that λ here actually has a direct physical meaning: −λ is the frictional
force on the sphere at the point of contact that heeps the sphere from slipping,
and provides the torque about its center of mass.

8.1.1 Spherical Pendulum

Consider a spherical pendulum, a mass point suspending on a string of length
l, so the particle is constrained to move on the surface of a sphere. In Cartesian
coordinates, centered at the point of suspension, the Lagrangian is

L =
1

2
m(ẋ2 + ẏ2 + ż2) − mgz. (8.11)

The constraint is

F =
1

2
(x2 + y2 + z2 − l2) = 0, or dF = xdx + ydy + zdz = 0. (8.12)

Thus, our Lagrangian equations of motion with the contraint encoded with the
help of a Lagrange multiplier λ, is

d

dt
pa =

∂L

∂qa

+ λ
∂F

∂qa

, (8.13)

or explicitly,
mẍ = λx, mÿ = λy, mz̈ = −mg + λz. (8.14)

Combining the first two equations gives

ymẍ − xmÿ =
d

dt
m(yẋ − xẏ) = 0, (8.15)

which is to say that the angular momentum about the z axis is conserved,

L̇z = 0, Lz = xpy − ypx. (8.16)

And, multiplying each equation of motion by the corresponding velocity com-
ponent, gives the energy:

m(ẋẍ + ẏÿ + żz̈) = −mgż + λ(xẋ + yẏ + zż), (8.17)

or
Ė = 0, E =

m

2
(ẋ2 + ẏ2 + ż2) + mgz, (8.18)

which uses the constraint equation (8.12). If, instead, we multiply each equation
of motion by the corresponding coordinate, we obtain

m(xẍ + yÿ + zz̈) = λ(x2 + y2 + z2) − mgz, (8.19)
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or
λl = m

(

ẍ
x

l
+ ÿ

y

l
+ z̈

z

l

)

+ mg
z

l
. (8.20)

But the (outward) normal to the spherical surface is

n̂ =
(x

l
,
y

l
,
z

l

)

, (8.21)

so
λl = F · n̂ − Fg · n̂, (8.22)

where F is the total force on the mass point, and Fg is the gravitational force.
Thus, the significance of the Lagrange multiplier is that λl is the tension in the
string.

For completeness, let us proceed to solve this problem, although it was
treated in one of the homework problems. In spherical polar coordinates,

x = l sin θ cosφ, y = l sin θ sin φ, z = l cos θ, (8.23)

the constraint is automatically satisfied, and the energy is

E =
1

2
ml2(θ̇2 + sin2 θφ̇2) + mgl cos θ, (8.24)

and the conserved z-component of angular momentum is

Lz = pφ = ml2 sin2 θφ̇. (8.25)

Using u = cos θ, we can rewrite the energy equation as

u̇2 =
2

ml2
[E − mglu](1− u2) − L2

z

m2l4
≡ U(u), (8.26)

which is integrated to read

t =

∫

du√
U

. (8.27)

The motion is confined between two turning points, −1 < u1 < u < u2 < 1,
and the period of motion is

T = 4

∫ u2

u1

du

U(u)
, (8.28)

which is an elliptic integral of the first kind.
At the same time the pendulum bob is oscillating back and forth in θ it is

precessing in φ. According to Eq. (8.25),

φ̇ =
Lz

ml2(1 − u2)
, (8.29)

and so

dφ =
Lz

ml2(1 − u2)

du√
U

. (8.30)

Therefore, the angle of precession in one period is

2π + ∆φ =
4Lz

ml2

∫ u2

u1

du

(1 − u2)
√

U
. (8.31)
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8.2 Noninertial coordinate systems

In discussing rigid bodies, we went from an inertial coordinate system, to an-
other system based at the center of mass of the body, and then to a rotated
coordinate system. Let’s abstract from that. Start from an inertial coordinate
system K0, where the Lagrangian of a single particle has the form

L0 =
1

2
mv2

0 − U(r). (8.32)

First, go to another coordinate system K ′ with axes parallel to those of K0, but
which is moving relative to the first with a prescribed velocity V(t). Then if v′

represents the velocity of the particle in K ′,

v0 = v′ + V(t), r0 = r′ + R(t), (8.33)

so the Lagrangian becomes

L0 =
1

2
mv′2 + mv′ ·V +

1

2
mV 2 − U. (8.34)

Now the third term, as a prescribed function of t, can be written as a total time
derivative, so is irrelevant to the equations of motion:

V(t)2 =
d

dt
F (t), F (t) =

∫ t

dt′V (t′)2, (8.35)

so we can replace the Lagrangian by

L′ =
1

2
mv′2 + mv′ ·V − U. (8.36)

The canonical momentum is unchanged:

p′ =
∂L

∂v′
= mv′ + mV = mv0 = p0, (8.37)

as is the equation of motion,

ṗ′ = ṗ0 = −∂U

∂r
= −∂U

∂r′
. (8.38)

By “integrating by parts” we can remove another total time derivative:

mv′ ·V = m
d

dt
(r′ ·V) − mr′ ·A, A =

dV

dt
, (8.39)

in terms of the prescribed acceleration A, so the Lagrangian in the moving
frame K ′ has the form

L′ =
1

2
mv′2 − mr′ · A− U, (8.40)
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which leads to the equation of motion

d

dt
mv′ = − ∂

∂r
U − mA(t), (8.41)

which is of course true, because

d

dt
mv′ =

d

dt
mv − mA. (8.42)

Now, we move on to the rotating frame K. Now although the position vector
is unchanged, r′ = r, the velocity transforms as

v′ = v + Ω× r, (8.43)

so the Lagrangian (8.40) becomes

L =
1

2
mv2 +

1

2
m(Ω × r)2 + mv · (Ω × r) − U − mr · A. (8.44)

Now the momentum is

p =
∂L

∂v
= mv + mΩ× r, (8.45)

and the equation of motion reads

ṗ = mv̇+mΩ̇×r+mΩ×ṙ =
∂L

∂r
= −∂U

∂r
−mA−mΩ×(Ω×r)+mv×Ω, (8.46)

or

mv̇ = −mΩ̇× r + 2mv × Ω + mΩ × (r × Ω) − ∂U

∂r
− mA. (8.47)

The first term on the right is due to any angular acceleration of the frame, the
second term is the “Coriolis force,”1 and the third is the “centrifugal force.”
Of course, these are not real forces, but appear because we are expressing the
acceleration of a particle in a noninertial coordinate frame.

Let’s finally consider a uniformly rotating coordinate system the origin of
which is not accelerated: Ω̇ = 0, A = 0. We then compute the energy by
making a Legendre transformation,

E = p · ṙ − L =
1

2
mv2 − 1

2
m(Ω × r)2 + U. (8.48)

Note that the linear term in v has dropped out. The second term in the energy
is the centrifugal potential energy. Note that the linear momentum and the
angular momentum are unchanged by passing to the rotating frame:

p0 = mv0 = m(v + Ω× r) = p, (8.49a)

L0 = r × p0 = mr × (v + Ω× r) = mr× p = L, (8.49b)

1Discovered, of course, much earlier, by Riccioli, Grimaldi (1651), and Laplace (1778).
Coriolis didn’t publish his paper until 1835.
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but the energy is not the same:

E =
1

2
m(−v0 +Ω× r)2 − 1

2
m(Ω× r)2 + U =

1

2
mv2

0 −mv0 ·Ω× r + U, (8.50)

or
E = E0 − L · Ω. (8.51)

Although this result was derived for a single particle, it is quite general, as may
be inferred from how the generator of a system of particles changes under a
rotation,

G =
∑

a

paδra =
∑

a

pa · δω × ra = δω · L, L =
∑

a

ra × pa. (8.52)

Thus for a rotation with angular velocity Ω for a time δt, δω = Ωδt, and the
change in the action is the difference of the generators,

δW = G1 − G2, G = −δt(E − L · Ω), (8.53)

which exhibits exactly the change in the energy seen in Eq. (8.51).
The Hamiltonian is obtained from the energy (8.48) by writing it in terms

of the position and the canonical momentum,

H(r,p) =
1

2m
(p−mΩ× r)2 − 1

2
m(Ω× r)2 + U =

p2

2m
−Ω · r × p + U. (8.54)

Indeed, it is easy to check that

ṙ =
∂H

∂p
=

p

m
− Ω× r = v, (8.55)

and

ṗ = m(v̇ + Ω̇ × r + Ω× v) = −∂H

∂r
= −Ω× p − ∂U

∂r
, (8.56)

or

mv̇ = −mΩ̇× r− 2mΩ× v − mΩ × (Ω× r) − ∂U

∂r
, (8.57)

which agrees with Eq. (8.47).

8.3 Problems for Chapter 8

1. In general, the nodal points of the trajectory of a spherical pendulum
advance during the course of the motion. For sufficiently small oscillations,
however, the nodal points must be fixed, for we are then dealing with an
harmonic elliptical motion. First imagine the motion is confined to a
plane, i.e., Lz = 0. Compute the period for a small oscillation about the
bottom of the sphere. Then let Lz 6= 0, but imagine the motion is between
two latitudes close to the south pole, θ− ≤ θ ≤ θ+, with both angles close
to π. Then there are oscillations in θ with period T , and precession in φ.
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Alternatively, the motion can be described as an elliptical orbit, due to a
harmonic restoring force. Compute T and the precession angle ∆φ during
one complete orbit, in this limit when the area of the elliptical orbit is
very small.

[Adapted from Sommerfeld’s book.]


