
Chapter 4

Relativistic Dynamics

The most important example of a relativistic particle moving in a potential is a
charged particle, say an electron, moving in an electromagnetic field, which
might be that of a nucleus. In the absence of magnetic charge (magnetic
monopoles) the two Maxwell equations that do not refer to electrically charged
particles are

∇ ·B = 0, −∇ × E =
1

c

∂B

∂t
. (4.1)

The first of these implies that B can be constructed from a vector potential,

B = ∇ × A, (4.2)

while the second can then be rearranged to

∇ ×

(

E +
1

c

∂

∂t
A

)

= 0, (4.3)

which implies the existence of a scalar potential,

E = −
1

c

∂

∂t
A− ∇φ. (4.4)

We can unite the scalar and vector potential into a single 4-vector, Aµ, A0 = φ,
Ai = (A)i. At this point, we simply assert (it will be proved in the Electrody-
namics course) that Aµ transforms as a 4-vector. A covariant way of writing
the construction of the electric and magnetic fields in terms of the potentials is
in terms of the field-strength tensor (∂µ = ∂/∂xµ)

Fµν = ∂µAν − ∂νAµ, (4.5)

which is evidently antisymmetric, Fµν = −F νµ, and has 6 independent compo-
nents:

F 0i = Ei, F ij = ǫijkBk (so F 12 = B3, etc.). (4.6)
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In terms of these potentials, the action describing the interaction of a particle
with rest mass m0 and charge e has the following Lorentz invariant form

W12 =

∫ 1

2

(

−m0c
2dτ +

e

c
Aµdxµ

)

. (4.7)

Recalling that cdτ =
√

−dxµdxµ, we obtain upon varying the action

δW12 = −m0c

∫ 1

2

(−dxµdxµ)−1/2 (

−dxλdδxλ

)

+
e

c

∫ 1

2

(

Aµdδxµ + δxλ∂λAµdxµ
)

= m0

∫ 1

2

[

d

(

δxµ
dxµ

dτ

)

− δxµ
d2xµ

dτ

]

+
e

c

∫ 1

2

[

d(δxµAµ) − δxµdAµ + δxλ∂λAµdxµ
]

= δxµ

(

m0
dxµ

dτ
+

e

c
Aµ

) ∣

∣

∣

∣

1

2

+

∫ 1

2

dτδxµ

[

−m0
d2xµ

dτ2
−

e

c

dAµ

dτ
+

e

c
∂µAλ

dxλ

dτ

]

. (4.8)

From this, we may read off the generators,

G = pµδxµ, pµ = m0
dxµ

dτ
+

e

c
Aµ, (4.9)

which gives the canonical momentum in terms of the mechanical momentum
and the vector potential, and the equation of motion,

d

dτ
pµ =

e

c
∂µAλ

dxλ

dτ
. (4.10)

The last equation gives the energy nonconservation equation and the Lorentz
force law: We can immediately rewrite it as

m0
d2xµ

dτ2
=

e

c

(

∂µAλ − ∂λAµ
) dxλ

dτ
=

e

c
Fµλ dxλ

dτ
. (4.11)

The left-hand side of the µ = 0 component of this equation reads

m0
d2x0

dτ2
= m0c

d

dτ
γ =

d

dτ

E

c
= γ

d

dt

E

c
, (4.12)

while the right-hand side of the same component equation is

e

c
F 0i dxi

dτ
=

e

c
γE · v, v =

dx

dt
, (4.13)
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so combining these we see
d

dt
E = eE · v, (4.14)

where E = m0γc2 is the mechanical energy of the particle; only the electric field
does work on the charged particle.

In terms of the mechanical momentum of the charged particle p = m0γv,
the µ = i component of Eq. (4.11) is

m0
d2xi

dτ2
=

d

dτ
pi =

e

c

(

F ij dxj

dτ
+ F i0 dx0

dτ

)

= eγ
(

E +
v

c
× B

)

i
, (4.15)

or
d

dt
p = e

(

E +
v

c
× B

)

. (4.16)

This is the Lorentz force law.
Finally, it is easy to check that taking the dot product of this equation with

v, which gives the power, yields the energy nonconservation equation (4.14).

4.1 Motion in a uniform magnetic field

Consider now the motion of a charged particle in a uniform magnetic field, so
the equations of motion read (now SI units)

dp

dt
= ev × B, p = m0γv =

E

c2
v,

dE

dt
= 0. (4.17)

This then means
E

c2

dv

dt
= ev × B, (4.18)

or
dv

dt
= ω × v, ω = −

ec2

E
B, (4.19)

which says that the velocity vector v precesses about the direction of the mag-
netic field with angular velocity ω. If we confine the motion to the x-y plane,
this says the particle moves in a circular orbit in that plane,

vx(t) = vx(0) cosωt + vy(0) sin ωt, (4.20a)

vy(t) = vy(0) cosωt − vx(0) sin ωt, (4.20b)

with ω = ec2B/E. The speed of the particle is related to the angular speed by
v = ωR, so radius of the orbit is

R =
βE

|e|cB
. (4.21)

For example, the proton synchrotron at the Large Hadron Collider (LHC)
has a circumference of 4.25 km, and an ultimate beam energy of 7 TeV. The
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constant vertical magnetic field required to bend the protons into a circular
orbit would be

B =
7 TeV

e 3 × 108 m/s 4.25 × 103m
= 5.5 T, (4.22)

but since the bending magnets are not providing a uniform field over the entire
orbit, they necessarily produce a higher peak magnetic field, about 8.3 T.

Note that the radius of curvature of a charged particle in a magnetic field
provides a practical way to measure momentum of such particles:

p =
E

c2
v =

Eβ

c
= eBR. (4.23)

4.2 Relativistic orbits

Now let us consider a relativistic orbit problem with a −α/r potential. That is,
we take as the Lagrangian

L = −m0c
2
√

1 − β2 +
α

r
. (4.24)

The Hamiltonian is

H =
√

p2c2 + m2
0c

4 −
α

r
. (4.25)

The orbit is confined to a plane, in which we adopt polar coordinates,

x = r cos θ, y = r sin θ, (4.26a)

ẋ = ṙ cos θ − rθ̇ sin θ, ẏ = ṙ sin θ + rθ̇ cos θ. (4.26b)

Thus the square of the velocity is

v2 = ẋ2 + ẏ2 = ṙ2 + r2θ̇2, (4.27)

so the Lagrangian is

L = −m0c
2

√

1 −
1

c2
(ṙ2 + r2θ̇2) +

α

r
. (4.28)

The canonical momenta are

pθ =
∂L

∂θ̇
= m0γr2θ̇ = ℓ, (4.29a)

pr =
∂L

∂ṙ
= m0γṙ. (4.29b)

Since θ does not occur in the Lagrangian, pθ is a constant of the motion, and
coincides with the angular momentum in the plane,

ℓ = m0rγvθ, vθ = rθ̇. (4.30)
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Now notice that
pr

pθ
=

ṙ

r2θ̇
=

1

r2

dr

dθ
, (4.31)

so

pr =
1

r2

dr

dθ
ℓ. (4.32)

The energy equation can be written as

(

E +
α

r

)2

= p2c2 + m2
0c

4 =

(

p2
r +

p2
θ

r2

)

c2 + m2
0c

4

=
c2ℓ2

r4

[

(

dr

dθ

)2

+ r2

]

+ m2
0c

4. (4.33)

As we did nonrelativistically, let r = 1/s, so

dr

dθ
= −

1

s2

ds

dθ
, (4.34)

and then the energy equation reads

(E + αs)2 − m2
0c

4 = c2ℓ2

(

ds

dθ

)2

+ c2ℓ2s2. (4.35)

This can be turned into the differential statement

dθ =
ds

√

(E+αs)2−m2

0
c4

c2ℓ2 − s2

. (4.36)

By completing the square, and introducing some abbreviations,

α̂ =
α

cℓ
, Ê =

E

cℓ
, Ê0 =

m0c
2

cℓ
, (4.37)

the differential equation is equivalent to

dθ =
ds

√

(α̂2 − 1)
(

s + α̂Ê
α̂2

−1

)2

− Ê2

α̂2
−1 − Ê2

0

. (4.38)

We will suppose α̂2 < 1; for the case of the Coulomb potential, this says
Ze2/c = Zh̄α0 < ℓ, which is not much of a restriction since α0, the fine structure
constant, has the value 1/137. If we further suppose that

Ê2

1 − α2
− Ê2

0 > 0, (4.39)
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Figure 4.1: Bound relativistic orbit in a −α/r potential. The parameters are
α̂ = 0.5, Ê = 0.95, Ê0 = 1. Note that the orbits do not close, but precess about
the origin. Shown are 5 encirclings of the origin.

the differential equation (4.38) may be immediately integrated as an arcsine,
with the result

1

r
=

α̂Ê

1 − α̂2
+

√

Ê2

(1 − α̂2)2
−

Ê2
0

1 − α̂2
cos

√

1 − α̂2θ

=
αE

ℓ2c2 − α2
+

√

E2c2ℓ2

(c2ℓ2 − α2)2
−

m2
0c

4

c2ℓ2 − α2
cos

√

1 −
α2

c2ℓ2
θ.

(4.40)

It is easy to check that in the nonrelativistic limit, c2 → ∞, E → m0c
2 + Ẽ, the

previous equation (2.35) is recovered. The condition for a bound orbit, so that
r is always finite, is that

Ê2 − Ê2
0(1 − α̂2) < α̂2Ê2, (4.41)

or

Ê

Ê0

< 1. (4.42)

If this is not satified, there are lines along which the particle enters and leaves
the system, in other words, scattering states. Some examples are provided in
the figures.

Further discussion of the relativistic Kepler/Coulomb problem can be found
in T. Boyer, Am. J. Phys. 72, 992 (2004). Of course, a correct treatment of
relativistic planetary orbits requires general relativistic concepts.
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Figure 4.2: Unbound relativistic orbit in a −α/r potential. The parameters are
α̂ = 0.5, Ê = 1.1, Ê0 = 1.

Figure 4.3: Unbound relativistic orbit in a −α/r potential. The parameters are
α̂ = 0.95, Ê = 10, Ê0 = 1. Note that the orbit is open, but encircles the origin
twice.
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4.3 Problems for Chapter 4

1. Show that the form of the Hamiltonian in terms of pr and pθ contained in
Eq. (4.33) follows from the general canonical formulation given in Sec. 2.2.
That is, show that

H = c

√

p2
r +

p2
θ

r2
+ m2

0c
2 −

α

r
, (4.43)

starting from the Lagrangian (4.28).

2. Check that the formula (4.40) reduces to the nonrelativistic limit (2.35)
when c → ∞.

3. Show there is a lower bound on ℓ in order that a circular orbit can exist
in the relativistic Coulomb problem.

4. Work out the relativistic orbits for the Coulomb problem in the cases
ℓ = α/c and ℓ < α/c. In particular, what happens when ℓ = 0?


