
Chapter 3

Relativistic Kinematics

Recall that we briefly discussed Galilean boosts, transformation going from one
inertial frame to another one, the first moving with an infinitesimal velocity δv
with respect to the second:

δra = δvt, δpa = maδv, δt = 0. (3.1)

The generator of the boost was

N = Pt − MR, (3.2)

where P is the total momentum, R is the position vector of the center of mass,

R =
1

M

∑

a

mara, M =
∑

a

ma. (3.3)

The generator being conserved, dN/dt = 0, although not as a result of an
invariance of the action, implies that

P = MV, V =
dR

dt
. (3.4)

However, Einstein gave up the inviolability of time, adhered to by Galileo
and Newton. In fact, an event is specified by a point in spacetime, (t,x);
since we conventionally use different units for time and distance, we introduce
a constant c (the speed of light), so that the four-dimensional coordinate of a
point in spacetime is

xµ = (ct,x), x0 = ct, x1 = x, x2 = y, x3 = z. (3.5)

Under a rotation, the length of a (three-) vector is unchanged,

x2 = x · x, δ(x · x) = 2(δω × x) · x = 0. (3.6)
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Similarly, under a boost, the 4-dimensional “length” is unchanged:

s2 =
3

∑

µ,ν=0

xµxνgµν ≡ xµxνgµν = xµxν = x · x − c2t2 (3.7)

(this is called the “proper” distance between the origin and the spacetime point
(ct,x)), where we have introduced the Einstein summation convention of sum-
ming over repeated upper (contravariant) and lower (covariant) indices, and the
metric tensor in Cartesian coordinates:

gµν = diag(−1, 1, 1, 1), (3.8)

which lowers indices,
xµ = gµνxν = (−ct,x). (3.9)

If we demand that s2 be invariant under an infinitesimal linear transformation,

δxµ = δωµνxν , δωµν = constant, (3.10)

that is,
δs2 = δxµxµ + xµδxµ = 2δxµxµ = 2δωµνxνxµ = 0, (3.11)

this implies
δωµν = −δωνµ, (3.12)

that is, δωµν is antisymmetric. This means there are only 6 independent in-
finitesimal parameters,

δω12, δω23, δω31, δω01, δω02, δω03. (3.13)

The first three correspond to rotations we discussed before, for example,

δω12 = δω3 (3.14)

corresponds to a rotation in the 12 plane, or a rotation about the 3 axis, or in
general1

δωij = ǫijkδωk, (3.15)

is a rotation in the ij plane, or about the k axis. Here we introduced the totally
antisymmetric Levi-Civita symbol

ǫijk = ǫjki = ǫkij = −ǫjik = −ǫikj = −ǫkji, (3.16)

with
ǫ123 = 1. (3.17)

What are new are the δω0i; these are the Einsteinian boosts or Lorentz
transformations. So, for a boost in the z direction,

δx0 = δω03z, δz = δω30x0, (3.18)

1Note that Greek indices run from 0 to 3, while Latin indices run from 1 to 3.
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or letting δω03 = 1

c δv,

δz = δvt, δt =
1

c2
δvz, δx = δy = 0. (3.19)

Now, unlike with the Galilean boost (3.1), time changes, but the effect is very
small for low velocities, δv/c ≪ 1. This looks like a sort of infinitesimal rotation,
through an imaginary angle. Let δθ = δv/c. Then we can write the above
transformation as a set of differential equations,

dz

dθ
= ct,

dct

dθ
= z, (3.20)

which can be combined into the second-order equations,

d2

dθ2
z = z,

d2

dθ2
ct = ct. (3.21)

If z(0) and ct(0) denote the values of z and ct at θ = 0, the solution of these
equations is

z(θ) = z(0) cosh θ + ct(0) sinh θ, ct(θ) = ct(0) cosh θ + z(0) sinh θ. (3.22)

This represents a general boost or Lorentz transformation along the z direction.
What is the significance of θ? Because |v/c| < 1, the relation between the
relative velocity of the two frames and the parameter θ must be

tanh θ =
v

c
, (3.23)

which lies between −1 and +1 for all real θ. Because of the identity

cosh2 θ − sinh2 θ = 1, (3.24)

we see that

cosh θ =

(

1 − v2

c2

)−1/2

, sinh θ =
v

c

(

1 − v2

c2

)−1/2

. (3.25)

Let us introduce the abbreviations

γ =
1

√

1 − v2

c2

, β =
v

c
. (3.26)

Then the Lorentz transformation along the z axis reads

z′ = γ(z + βct), t′ = γ(t + βz/c). (3.27)

This describes a boost from one frame to another moving relevant to the first
with a velocity −v along the z axis.
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To verify that x2−c2t2 is indeed invariant under a finite boost, we can write
the above transformation in the following form,

z′ + ct′ = γ[z(1+β)+ ct(1+β)] =

√

1 + β

1 − β
(z + ct), z′− ct′ =

√

1 − β

1 + β
(z− ct),

(3.28)
from which the claimed invariance is immediate.

What about two succesive boosts in the same direction? First,

z′ + ct′ =

√

1 + β1

1 − β1

(z + ct), (3.29)

and then

z′′ + ct′′ =

√

1 + β2

1 − β2

(z′ + ct′) =

√

1 + β2

1 − β2

√

1 + β1

1 − β1

(z + ct), (3.30)

but the result must be a single boost with a velocity v = βc,

z′′ + ct′′ =

√

1 + β

1 − β
(z + ct). (3.31)

Thus

1 + β

1 − β
=

1 + β1

1 − β1

1 + β2

1 − β2

=
1 + β1 + β2 + β1β2

1 − β1 − β2 + β1β2

=
1 + β1+β2

1+β1β2

1 − β1+β2

1+β1β2

, (3.32)

so

β =
β1 + β2

1 + β1β2

. (3.33)

This gives the relativistic law for the addition of velocities in the same direction:

v =
v1 + v2

1 + v1v2/c2
, (3.34)

which is usual addition if |va/c| ≪ 1, but has the property that if one of the
velocities is that of light, say v2 = c, then v = c, and the sum of two subluminal
velocities is always less than that of light in magnitude.

3.1 Generators

Let us consider a single free particle, and generalize the infinitesimal transfor-
mations to a boost δv. The transformations are, instead of Eq. (3.1),

δr = δvt, δp = mδv, δt =
1

c2
δv · r. (3.35)
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The integrand in the action is

dt L = p · dr − H dt, (3.36)

which changes by (H = H(p))

δ[dt L] = mδv · dr + p · δvdt − ∂H

∂p
mδvdt − H

δv

c2
· dr

= δv ·
[(

m − H

c2

)

dr +

(

p− m
∂H

∂p

)

dt

]

. (3.37)

This will be zero, so the action is invariant, if

m =
H

c2
(or E = mc2) and

∂H

∂p
=

p

m
=

p

H
c2, (3.38)

or
H dH = c2p · dp, (3.39)

which means
H2 = p2c2 + constant = p2c2 + m2

0c
2, (3.40)

where we have introduced the rest mass, m0. The mass m which appears in the
momentum is not the rest mass, but c2 divided into

H =
√

p2c2 + m2
0c

4. (3.41)

The generator of a boost or Lorentz transformation is

G = p · δr − Hδt = p · δvt − H
δv · r

c2
= δv · N, (3.42)

where

N = pt − H

c2
r. (3.43)

The constancy of G implies that of N, where, because p and H are constants,
implies

0 =
dN

dt
= p− H

c2

dr

dt
, (3.44)

or, since H = mc2,
p = mv. (3.45)

In terms of velocity, this means

p2 = (p2 + m2
0c

2)
v2

c2
, (3.46)

or

p2

(

1 − v2

c2

)

= m2
0v

2, (3.47)

that is,

p =
m0v

√

1 − v2/c2
= γm0v. (3.48)

In other words, m = m0γ, or

H = mc2 = m0γc2. (3.49)
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3.2 Action

Now the Lagrangian is

L = p · ṙ − H = m0γv2 − m0γc2 = −m0c
2

√

1 − v2

c2
, (3.50)

as we saw before.
Now recall we define a proper distance as

s2 = x2 − c2t2, (3.51)

so for an infinitesimal interval, can define a proper distance, or, alternatively, a
proper time,

c2dτ2 = −ds2 = c2dt2 − dx2, (3.52)

or, in terms of dx/dt = v,

dτ = dt

√

1 − v2

c2
. (3.53)

Thus the action in proportional to the proper time along the path of the particle,

W12 = −m0c
2

∫ t1

t2

dt

√

1 − v2

c2
= −m0c

2

∫ 1

2

dτ = −m0c

∫ 1

2

√

−dxµdxµ.

(3.54)
Now let’s use the action principle: since the action does not depend upon τ ,

except implicitly through xµ(τ), the variation of the action is merely

δW12 = −m0c

∫ 1

2

(

−1

2

)

(−dxµdxµ)−1/22dδxµdxµ

= m0

∫ 1

2

dδxµ dxµ

dτ

= m0

∫ 1

2

[

d

(

δxµ dxµ

dτ

)

− δxµ d2

dτ2
xµdτ

]

, (3.55)

from which we infer

G = m0

dxµ

dτ
δxµ ≡ pµδxµ, (3.56)

and the equation of motion for a free, relativistic particle,

d2xµ

dτ2
= 0. (3.57)

Here appears the four-momentum,

pµ = m0

dxµ

dτ
= (E/c,p) = γm0(c,v). (3.58)

The square of the four-momentum is an invariant scalar,

pµpµ = −m2
0c

2, (3.59)
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the negative square of the rest energy m0c
2, divided by c2. The equation of

motion here is just the conservation of energy and momentum of a free particle.
And it is easy to check that the momentum is indeed the canonical one:

pµ =
∂L

∂ẋµ
, ẋµ ≡ d

dτ
xµ, (3.60)

because
∂

∂ẋµ

(

−m0c
√

−ẋµẋµ

)

=
m0c√
−ẋν ẋν

dxµ

dτ
= m0

dxµ

dτ
, (3.61)

where we’ve defined the Lagrangian by

W12 = −m0c
2

∫ 1

2

dτ
√

−dẋµdẋµ =

∫ 1

2

dτ L; (3.62)

L is −m0c
2 on the true trajectory, but is a function of the four-velocity else-

where.

3.3 Problems for Chapter 3

1. Find the explicit form of θ given in Eq. (3.23) in terms of v/c as a log-
arithm. How does the composition law of velocities appear in terms of
θ?

2. Show that the finite Lorentz transformations have the vectorial form

r′ = r +
γ2

1 + γ

1

c2
vv · r + γvt, (3.63a)

t′ = γ

(

t +
1

c2
v · r

)

. (3.63b)

Check the invariance of r2 − (ct)2.

3. A body of mass M is at rest relative to one observer. Two photons,
each of energy ǫ, moving in opposite directions along the x-axis, fall on
the body and are absorbed. Since the photons carry equal and opposite
momenta, no net momentum is transferred to the body, and it remains
at rest. Another observer is moving relative to the first slowly along the
y-axis. Relative to her, the two photons and the body, both before and
after the absorption act, have a common velocity v (|v| ≪ c) along the
y-axis. Reconcile conservation of the y-component of momentum with the
fact that the velocity of the body does not change when the photons are
absorbed.
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