Second Examination Physics 5013, Mathematical Methods of Physics

November 18, 2011

Instructions: Attempt all parts of this exam. If you get stuck on one part, assume an answer and proceed on. Do not hesitate to ask questions. Remember this is a closed book, closed notes, exam. Good luck!

These problems involve evaluating integrals using the residue theorem. In each case state carefully relation of the integral in question to a closed contour integral, state the contour of integration carefully, state where the poles are, and evaluate the residue of the poles.

1. Evaluate the integral

$$
\int_{0}^{\infty} d x \frac{\sin x}{x} \frac{1}{\left(x^{2}+a^{2}\right)^{2}}, \quad a>0
$$

using Jordan's lemma. Be careful about $x=0$.
2. Evaluate the integral

$$
\int_{0}^{\infty} d x \frac{\sqrt{x}}{x^{2}+1}
$$

using the residue theorem. Be careful about the phase associated with the square root.
3. Convert

$$
\int_{0}^{2 \pi} d \theta \frac{1}{(\cos \theta+a)}, \quad a>1
$$

to a contour integral, and evaluate the latter by the residue theorem.

