Physics 5013. Homework 6 Due Wednesday, November 16, 2011

November 4, 2011

1. Evaluate the following divergent sums using both the Euler and the generic methods:
(a)

$$
1+0-1+0-1+0+1+0+1+0-1+\ldots,
$$

(b)

$$
1+0+0-1+1+0+0-1+1+0+0+\ldots,
$$

(c)

$$
1-1+0+0+1-1+0+0+\ldots
$$

2. Evaluate the following series using both the Euler and the Borel methods:

$$
\sum_{n=0}^{\infty}(-1)^{n} n^{2}
$$

3. Show that $0!-2!+4!-6!+\ldots$ is not Borel summable but that $0!+0-$ $2!+0+4!+0-6!+0+\ldots$ is. Compute the Borel sum of the latter.
4. Consider the function

$$
\frac{1}{z} \log (1+z)
$$

Derive the [3, 3] Padé approximant stated in class

$$
P_{3}^{3}(z)=\frac{1+\frac{17}{14} z+\frac{1}{3} z^{2}+\frac{1}{10} z^{3}}{1+\frac{12}{7} z+\frac{6}{7} z^{2}+\frac{4}{35} z^{3}} .
$$

Similarly, work out $P_{4}^{3}(z)$, and verify the values given in class for $z=$ $0.5,1$, and 2 .
5. The Stirling series for the Gamma function is for $n \rightarrow \infty$,

$$
\Gamma(n)=(n-1)!\sim\left(\frac{2 \pi}{n}\right)^{1 / 2}\left(\frac{n}{e}\right)^{n}\left(1+\frac{A_{1}}{n}+\frac{A_{2}}{n^{2}}+\frac{A_{3}}{n^{3}}+\frac{A_{4}}{n^{4}}+\ldots\right),
$$

where

$$
\begin{aligned}
A_{1} & =\frac{1}{12} \\
A_{2} & =\frac{1}{288} \\
A_{3} & =-\frac{139}{51840}, \\
A_{4} & =-\frac{571}{2488320} .
\end{aligned}
$$

Compute the $[1,1]$ and $[2,2]$ Padé approximants for $\Gamma(x)(e / x)^{x} \sqrt{x / 2 \pi}$. Compare numerically the values so obtained with the exact function for $x=0.2,0.5$, and 1.0 , which are small values of x. Can a more accurate approximation be obtained by averaging P_{1}^{1} and P_{2}^{2} ?
6. Compute the first three terms of the continued-fraction coefficients of the series:
(a)

$$
\sum_{n=0}^{\infty}(n!)^{2}(-z)^{n}
$$

(b)

$$
\sum_{n=0}^{\infty} \frac{(-z)^{n}}{(2 n)!}
$$

(c)

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n^{2}+1}
$$

7. Consider a continued-fraction representation of the exponential function in the form

$$
e^{x}=\frac{c_{0}}{1+\frac{c_{1} z z}{1+\frac{c_{2} z}{1+\frac{z_{3} z}{1+}}}} .
$$

Show that

$$
c_{0}=-c_{1}=1, \quad c_{2 n}=\frac{1}{4 n-2}, \quad c_{2 n+1}=-\frac{1}{4 n+2}, \quad n \geq 1 .
$$

How many terms must be included to compute e to 8 significant figures?

