# Physics 5013. Homework 6 <br> Due Friday, November 3, 2006 

October 24, 2006

## Problems in Bender and Orzag:

Chapter 8, pp. 412-3: 18, 19, 20, $\mathbf{3 1}$

## Additional problems:

1. Consider the function

$$
\frac{1}{z} \log (1+z) .
$$

Derive the [3, 3] Padé approximant stated in class

$$
P_{3}^{3}(z)=\frac{1+\frac{17}{14} z+\frac{1}{3} z^{2}+\frac{1}{140} z^{3}}{1+\frac{12}{7} z+\frac{6}{7} z^{2}+\frac{4}{35} z^{3}} .
$$

Similarly, work out $P_{4}^{3}(z)$, and verify the values given in class for $z=$ $0.5,1$, and 2.
2. The Stirling series for the Gamma function is for $n \rightarrow \infty$,

$$
\Gamma(n)=(n-1)!\sim\left(\frac{2 \pi}{n}\right)^{1 / 2}\left(\frac{n}{e}\right)^{n}\left(1+\frac{A_{1}}{n}+\frac{A_{2}}{n^{2}}+\frac{A_{3}}{n^{3}}+\frac{A_{4}}{n^{4}}+\ldots\right),
$$

where

$$
\begin{aligned}
A_{1} & =\frac{1}{12} \\
A_{2} & =\frac{1}{288} \\
A_{3} & =-\frac{139}{51840}, \\
A_{4} & =-\frac{571}{2488320} .
\end{aligned}
$$

Compute the $[1,1]$ and $[2,2]$ Padé approximants for $\Gamma(x)(e / x)^{x} \sqrt{x / 2 \pi}$. Compare numerically the values so obtained with the exact function for $x=0.2,0.5$, and 1.0 , which are small values of $x$. Can a more accurate approximation be obtained by averaging $P_{1}^{1}$ and $P_{2}^{2}$ ?
3. Consider a continued-fraction representation of the exponential function in the form

$$
e^{x}=\frac{c_{0}}{1+\frac{c_{1} z c^{2}}{1+\frac{c_{2}}{1+\frac{3 z z}{1+\ldots}}}} .
$$

Show that

$$
c_{0}=-c_{1}=1, \quad c_{2 n}=\frac{1}{4 n-2}, \quad c_{2 n+1}=-\frac{1}{4 n+2}, \quad n \geq 1
$$

How many terms must be included to compute $e$ to 8 significant figures?

