Physics 5013. Homework 6
Due Wednesday, October 18, 2006

October 9, 2006

. By integrating e";t—a_zl around a rectangle whose corners are 0, R, R+,
i (the rectangle being indented at 0 and i) and letting R — oo, show
that
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a result due to Legendre.

. Show that if a >0, b > 0,
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. Show that
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. Evaluate

by using a contour which encircles the branch line given in Problem
4.7, and closed by a circle at infinity. Equivalently, consider a contour
of two parts: one that just encloses the branch line from z = —1 to
z = 41 and another being a circle about the origin of very large radius.
Between these two contours, the function
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is analytic.



. Recall the generating function defining the Bernoulli numbers:
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where Cj is a circle about the origin with radius |z| < 27. From this
integral find By, By directly. By distorting Cy into C, an infinite circle
about the origin (and hence crossing an infinite number of poles!), show
that for n even, n > 2,
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where
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Use the residue theorem to evaluate the following integrals:
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