Physics 5013. Homework 6 Due Wednesday, October 18, 2006

October 9, 2006

1. By integrating $\frac{e^{ \pm a i z}}{e^{2 \pi z}-1}$ around a rectangle whose corners are $0, R, R+i$, i (the rectangle being indented at 0 and i) and letting $R \rightarrow \infty$, show that

$$
\int_{0}^{\infty} \frac{\sin a x}{e^{2 \pi x}-1} d x=\frac{1}{4} \frac{e^{a}+1}{e^{a}-1}-\frac{1}{2 a},
$$

a result due to Legendre.
2. Show that if $a>0, b>0$,

$$
\int_{0}^{\infty} e^{a \cos b x} \sin (a \sin b x) \frac{d x}{x}=\frac{\pi}{2}\left(e^{a}-1\right) .
$$

3. Show that

$$
\int_{0}^{\pi / 2} \frac{a \sin 2 x}{1-2 a \cos 2 x+a^{2}} x d x=\left\{\begin{array}{cc}
\frac{\pi}{4} \log (1+a), & -1<a<1, \\
\frac{\pi}{4} \log \left(1+a^{-1}\right), & a^{2}>1 .
\end{array}\right.
$$

4. Evaluate

$$
\int_{-1}^{1} \frac{d x}{\sqrt{1-x^{2}}\left(1+x^{2}\right)^{2}}
$$

by using a contour which encircles the branch line given in Problem 4.7, and closed by a circle at infinity. Equivalently, consider a contour of two parts: one that just encloses the branch line from $z=-1$ to $z=+1$ and another being a circle about the origin of very large radius. Between these two contours, the function

$$
f(z)=\sqrt{1-z^{2}}
$$

is analytic.
5. Recall the generating function defining the Bernoulli numbers:

$$
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n} .
$$

Show that

$$
B_{n}=\frac{n!}{2 \pi i} \oint_{C_{0}} \frac{z}{e^{z}-1} \frac{d z}{z^{n+1}},
$$

where C_{0} is a circle about the origin with radius $|z|<2 \pi$. From this integral find B_{0}, B_{1} directly. By distorting C_{0} into C, an infinite circle about the origin (and hence crossing an infinite number of poles!), show that for n even, $n \geq 2$,

$$
B_{n}=-\frac{(-1)^{n / 2} 2 n!}{(2 \pi)^{n}} \zeta(n),
$$

where

$$
\zeta(n)=\sum_{p=1}^{\infty} p^{-n}
$$

Use the residue theorem to evaluate the following integrals:
6.

$$
\int_{0}^{2 \pi} \frac{d \theta}{1+a \sin ^{2} \theta}, \quad a>0
$$

7.

$$
\int_{0}^{\infty} \frac{d x \sin x}{x\left(x^{2}+a^{2}\right)}, \quad a>0
$$

8.

$$
\int_{0}^{\infty} \frac{x^{2 a-1}}{1+x^{2}}, \quad 0<a<1
$$

9.

$$
P \int_{0}^{\infty} d x \frac{\sqrt{x}}{x^{2}-a^{2}}, \quad a>0 .
$$

