
Physics 5013. Homework 4

Due Wednesday, October 12, 2011

October 1, 2011

1. Prove that the value of an analytic function at the center of a circle is
equal to the mean of the values of the function on the circumference of
the circle, provided that the function is analytic everywhere inside and
on the circle. That is, if the circle has radius r,

f(z) =
1

2π

∫

2π

0

f(z + reiθ) dθ.

2. If f(z) = u(x, y) + iv(x, y) is analytic in a simply connected region R,
the functions u and v do not attain local maxima or minima at any
interior point of R. Prove this theorem two ways:

(a) Use the Cauchy-Riemann conditions. [Assume, for example, that
∂2u/∂x2 > 0 at the stationary point.]

(b) Use the Cauchy integral formula. [Take as contour a small cir-
cle about the stationary point. Then you may use the result of
Problem 1.]

3. Let γ be a simple closed curve inside and on which f(z) is analytic.
Suppose that f does not vanish at any point on γ. Show that the
integral

1

2πi

∮

γ

f ′(z)

f(z)
dz

equals the number of zeroes of f inside γ.
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4. Show that, if g(z) is analytic on and within a closed contour γ, and
f(z) has zeroes within γ, the zero at zn having multiplicity αn, n =
1, 2, . . . , N , and poles within γ at z′m, the order of the pole at z′m being
βm, m = 1, 2, . . . ,M , αn and βm being integers, that

1

2πi

∮

γ
dz g(z)

d

dz
ln f(z) =

N
∑

n=1

αng(zn) −
M
∑

m=1

βmg(z′m).

5. An example of the use of this formula is in evaluating the zero-point
energy of oscillation on a string which is tied down at points x = 0
and x = a. If the speed of the waves on the string is c, the sum of the
zero-point oscillation energies on the string is

E0 =
1

2

∑

h̄ω =
h̄c

2

∞
∑

n=1

nπ

a
.

This is divergent, yet may be evaluated as follows.

(a) Show that

E0 =
∑ h̄c

2

∫

C

dω

2πi
ω

d

dω
ln sin ωa.

Here C is a contour which encircles all the zeros of the sine function
on the positive real axis.

(b) Now rotate formally ω → iζ, where ζ is now regarded as real.
That is, we open up the contour around the poles on the real ω
axis to one running along the imaginary axis. In doing so, omit a
divergent term in the integrand proportional to ζa, and show that
what is left is

E0 = −
h̄ca

π

∫

∞

0

dζζ
1

e2ζa − 1
.

(Where does the minus sign come from?)

(c) Evaluate this using the identity (prove this by expanding the de-
nominator)

∫

∞

0

dx xn−1

ex − 1
= Γ(n)ζ(n),

in terms of the Riemann zeta function and the gamma function.
You will need the value ζ(2) = π2/6. The result is called the
Lüscher energy, the Casimir energy of interaction between two
Dirichlet points, and is used in the quark model.
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6. The quantum vacuum energy (Casimir energy) of a scalar field living
on the surface of the three-dimensional sphere of radius a is given by
the exact formula for an arbitrary temperature T :

U =
1

240a
+

1

a

∞
∑

n=1

n3

en/aT − 1
. (1)

(a) Show that for low temperatures, aT ≪ 1, this implies that

U ∼
1

a

1

240
, (2)

up to exponentially small corrections.

(b) Now use the Euler-Maclaurin sum formula to evaluate the sum in
(1) and derive a formula valid for high temperatures,

U ∼
(2πaT )4

240a
, aT ≫ 1, (3)

up to exponentially small corrections in the high temperature
limit.

(c) Evaluate the latter by proving the Poisson sum formula from the
identity

∞
∑

n=−∞

e−i2πnx =
∞
∑

n=−∞

δ(x − n) (4)

(why is this true?) from which one can deduce from the definition
of the Fourier transform c of a function b,

c(α) =
∫

∞

−∞

dx

2π
e−iαxb(x), (5)

the equality
∞
∑

n=−∞

b(n) = 2π
∞
∑

n=−∞

c(2πn). (6)

Equation (6) is the Poisson sum formula.

(d) Show that the Fourier transform of

b(x) =
1

a

{

x3

ex/aT
−1

, x ≥ 0,

0, x ≤ 0
(7)
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is

c(α) =
1

2πa

∞
∑

k=0

Γ(4)

[(k + 1)/aT + iα]4
, (8)

and therefore show from (6) that (1) can be written in the form

U =
1

240a
+

1

a
(aT )4Γ(4)

∞
∑

n=−∞

∞
∑

k=0

1

[1 + k − i2πaTn]4
. (9)

By interchanging the order of the two infinite summations here,
show that this implies that the energy (1) can be written in the
alternative form

U =
(2πaT )4

240a
+

1

a
(2πaT )4

∞
∑

n=1

n3

e4π2naT − 1
, (10)

which indeed exhibits the exponentially small corrections to (3)
for high temperature. Note that (1) and (10) are exactly equal,
yet the first is especially adapted to describe the low temperature
limit, and the second is useful for the high termperature limit.
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