Physics 5013. Homework 2
 Due Friday, September 9, 2011

September 2, 2011

Problems in Whittaker and Watson: Problems 1, 2, and 3, Chapter III, page 59.

1. For what range of positive values of x is

$$
\sum_{n=0}^{\infty} \frac{1}{1+x^{n}}
$$

(a) Convergent?
(b) Uniformly convergent?
2. In numerical analysis it is often convenient to replace derivatives by finite differences. For example, we might represent the second derivative of a function as follows:

$$
\frac{d^{2}}{d x^{2}} \psi(x) \approx \frac{1}{h^{2}}[\psi(x+h)-2 \psi(x)+\psi(x-h)] .
$$

Regarding h as a small parameter, find the error in this approximation.
3. Compute e from the Taylor series of e^{x} about 0 to 16 significant figures.
4. Given that

$$
\int_{0}^{1} \frac{d x}{1+x^{2}}=\left.\tan ^{-1} x\right|_{0} ^{1}=\frac{\pi}{4},
$$

expand the integrand into a series and integrate term by term, obtaining

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\cdots+(-1)^{n} \frac{1}{2 n+1}+\cdots,
$$

which is Leibnitz's formula for π (actually discovered by Gregory in 1671). This formula converges so slowly that it is quite useless for numerical work: compute the first 100 terms and see for yourself!

