Physics 5013. Homework 2
 Due Friday, September 17, 2010

September 10, 2010

1. Show that the series

$$
\sum_{n=1}^{\infty} \frac{z^{n-1}}{\left(1-z^{n}\right)\left(1-z^{n+1}\right)}
$$

is equal to $\frac{1}{(1-z)^{2}}$ when $|z|<1$ and is equal to $\frac{1}{z(1-z)^{2}}$ when $|z|>1$. Is this fact connected with the theory of uniform convergence?
2. Show that the series

$$
2 \sin \frac{1}{3 z}+4 \sin \frac{1}{9 z}+\ldots+2^{n} \sin \frac{1}{3^{n} z}+\ldots
$$

converges absolutely for all values of z except for $z=0$, but show that it does not converge uniformly near $z=0$.
3. If (for x real)

$$
u_{n}(x)=-2(n-1)^{2} x e^{-(n-1)^{2} x^{2}}+2 n^{2} x e^{-n^{2} x^{2}}
$$

show that $\sum_{n=1}^{\infty} u_{n}(x)$ does not converge uniformly near $x=0$.
4. For what range of positive values of x is

$$
\sum_{n=0}^{\infty} \frac{1}{1+x^{n}}
$$

(a) Convergent?
(b) Uniformly convergent?
5. In numerical analysis it is often convenient to replace derivatives by finite differences. For example, we might represent the second derivative of a function as follows:

$$
\frac{d^{2}}{d x^{2}} \psi(x) \approx \frac{1}{h^{2}}[\psi(x+h)-2 \psi(x)+\psi(x-h)] .
$$

Regarding h as a small parameter, find the error in this approximation.
6. Compute e from the Taylor series of e^{x} about 0 to 16 significant figures.
7. Given that

$$
\int_{0}^{1} \frac{d x}{1+x^{2}}=\left.\tan ^{-1} x\right|_{0} ^{1}=\frac{\pi}{4},
$$

expand the integrand into a series and integrate term by term, obtaining

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\cdots+(-1)^{n} \frac{1}{2 n+1}+\cdots,
$$

which is Leibnitz's formula for π (actually discovered by Gregory in 1671). This formula converges so slowly that it is quite useless for numerical work: compute the first 100 terms and see for yourself!

