Physics 5013. Homework 7 Due Friday, December 2, 2011

November 30, 2011

1. An integral representation for the modified Bessel function $K_{\nu}(x)$ is

$$
K_{\nu}(x)=\frac{1}{2} \int_{-\infty}^{\infty} d t e^{-x \cosh t+\nu t} .
$$

Show that

$$
K_{i p}(x)=\sqrt{2 \pi}\left(p^{2}-x^{2}\right)^{-1 / 4} e^{-p \pi / 2} \sin \phi(x)
$$

where

$$
\phi(x)-p \cosh ^{-1}(p / x)+\sqrt{p^{2}-x^{2}} \sim \frac{\pi}{4}, \quad x \rightarrow+\infty, \quad p / x \rightarrow+\infty .
$$

Hint: The contribution comes from the neighborhood of two saddle points satisfying $\sinh t=i p / x$. Explain why it is that although there are an infinite number of saddle points, only two contribute to the leading behavior.
2. An integral representation of the second Airy function $\operatorname{Bi}(x)$ is given by

$$
\operatorname{Bi}(x)=\frac{1}{2 \pi} \int_{C_{+}} d t e^{x t-t^{3} / 3}+\frac{1}{2 \pi} \int_{C_{-}} d t e^{x t-t^{3} / 3}
$$

where $C_{ \pm}$is a contour which originates at $\infty e^{ \pm 2 \pi i / 3}$ and terminates at $+\infty$. Using the method of steepest descents, find the leading asymptotic behavior as $x \rightarrow+\infty$.

Figure 1: Contour C used for defining the Hankel representation of the gamma function.
3. One representation for the gamma function is

$$
\frac{1}{\Gamma(x)}=\frac{1}{2 \pi i} \int_{C} e^{t} t^{-z} d t
$$

where the contour of integration is as shown in Figure 1. Use the method of steepest descents to derive Stirling's approximation,

$$
\Gamma(x) \sim x^{x} e^{-x} \sqrt{\frac{2 \pi}{x}}, \quad x \rightarrow+\infty
$$

4. The Airy function has the asymptotic expansion

$$
\operatorname{Ai}(x) \sim \frac{1}{2} \pi^{-1 / 2} x^{-1 / 4} e^{-2 x^{3 / 2} / 3}\left[1+O\left(x^{-3 / 2}\right)+O\left(x^{-3}\right)+\ldots\right]
$$

Fill in the steps followed in class, and calculate the $O\left(x^{-3 / 2}\right)$ and the $O\left(x^{-3}\right)$ terms.
5. Using the integral representation for the Hankel function of the first kind

$$
H_{\nu}^{(1)}(z)=\frac{e^{-i \nu \pi / 2}}{\pi} \int_{-\pi / 2+i \infty}^{\pi / 2-i \infty} d \phi e^{i(z \cos \phi+\nu \phi)}
$$

derive Debye's asymptotic expansion for $\tan \alpha>0$ and ν large and positive:
$H_{\nu}^{(1)}(\nu \sec \alpha) \sim \sqrt{\frac{2}{\pi \nu \tan \alpha}} e^{-i \pi / 4} e^{i \nu(\tan \alpha-\alpha)}\left(1+\frac{u_{1}(\cot \alpha)}{i \nu}+O\left(1 / \nu^{2}\right)\right)$, where

$$
u_{1}(t)=\frac{3 t+5 t^{3}}{24}
$$

