Physics 5013. Homework 1
 Due Friday, September 2, 2011

August 22, 2011

Problems in Whittaker and Watson: Chapter II, Problems 2, 6, and 10, pp. 38-39.

1. Prove that

$$
\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})\left(\sqrt{n+\frac{1}{2}}\right)=\frac{1}{2}
$$

2. Let $a_{n}=\frac{10^{n}}{n!}$. (a) To what limit does a_{n} converge as $n \rightarrow \infty$? (b) Is the sequence monotonic? (c) Is it monotonic from a certain n onwards? (d) Give an estimate of the difference between a_{n} and the limit. (e) From what value of n onwards is this difference less than $\frac{1}{100}$?
3. Prove that the sequence $\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \cdots$, converges. Find its limit.
4. For what real values of α does

$$
\sum_{n=1}^{\infty} \frac{n!}{(1+\alpha)(2+\alpha) \cdots(n+\alpha)}
$$

converge?
5. Test for convergence:
(a)

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

(b)

$$
\sum_{n=1}^{\infty} \log \left(1+\frac{1}{n}\right)
$$

(c)

$$
\sum_{n=2}^{\infty} \frac{1}{n \log n}
$$

(d)

$$
\sum_{n=1}^{\infty} \frac{1}{n n^{1 / n}}
$$

(e)

$$
\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}
$$

6. For what real values of p and q will the following series converge?

$$
\sum_{n=2}^{\infty} \frac{1}{n^{p}(\ln n)^{q}}
$$

