
Chapter 9

Asymptotic Expansions

We will illustrate the notions with a couple of carefully chosen examples. For
more detail, you are referred to C. M. Bender and S. A. Orzag, Advanced Math-

ematical Methods for Physicists and Engineers: Asymptotic Methods and Per-

turbation Theory (Springer, 1999).

9.1 The Airy Function

The Airy function, which occurs, for example, in various radiation problems, is
defined by the integral

πAi(ζ) =

∫ ∞

0

dt cos

(

ζt +
1

3
t3

)

=
1

2

∫ ∞

−∞

dt ei(ζt+t3/3). (9.1)

Let z = it; then this integral can also be given as

Ai(ζ) =
1

2πi

∫ i∞

−i∞

dz eζz−z3/3, (9.2)

where the path of integration is along the imaginary axis. Now, to this point,
this integral has only a formal existence, since the magnitude of the integrand
is unity. However, if we distort the contour to C, as shown in Fig. 9.1, which
passes through the origin, but is asymptotic to the lines arg z = ±2π/3, we
obtain a convergent integral since

z3 =
(

ρe±i2π/3
)3

= ρ3 > 0. (9.3)

This deformation of the contour is permissible because the contributions of the
arcs at infinity, connecting the ends of C to the imaginary axis, are negligible.
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Figure 9.1: Contour C used to define the Airy function in Eq. 9.5.

That is, if z = Reiθ, R → ∞, we have

Re z3 = R3 cos 3θ > 0 if
2π

3
≥ θ >

π

2
or if − 2π

3
≤ θ < −π

2
, (9.4)

so the integrand is exponentially small there.1 Thus the final definition of the
Airy function is

Ai(ζ) =
1

2πi

∫

C

dz eζz−z3/3. (9.5)

We now want to find a useful approximation to this integral valid for |ζ|
large. To do so we note that the exponent, and its first two derivatives, are as
functions of z,

φ(z) = ζz − 1

3
z3, (9.6a)

φ′(z) = ζ − z2, (9.6b)

φ′′(z) = −2z, (9.6c)

so that φ(z) has vanishing derivative when z = ±
√

ζ. (For definiteness, we shall
suppose that ζ is real.) Since the integrand in the integral defining the Airy
function is entire, we can deform C so that it passes through one of these points,
say z = −

√
ζ, as shown in Fig. 9.2. The reason we choose the contour C to

pass through the stationary point z = −√
ζ is that there the second derivative

is positive, so that a curve whose tangent is parallel to the imaginary axis will
pass through a maximum rather than a minimum. In particular, let us choose
C so that φ is real everywhere along the path. Then for ξ = z +

√
ζ small, we

can expand

φ(z) ≈ φ(z = −
√

ζ) + φ′′(z = −
√

ζ)
ξ2

2
= −2

3
ζ

3

2 + 2ζ
1

2

ξ2

2
. (9.7)

Requiring Imφ = 0 implies ξ be either real or imaginary. We choose the latter,
as indicated in Fig. 9.2, so that φ will have a maximum at z = −

√
ζ on the

path. This path is called the path of steepest descents.

1This argument fails in the immediate vicinity of the imaginary axis, reflecting the ill-
defined nature of Eq. (9.2). A distortion so that | arg z| > π

2
must be supplied in any case.
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Figure 9.2: Deformed contour C which passes through the saddle point.

Note that in the perpendicular direction, along the real axis, the function
is a minimum at the stationary point. Thus, the stationary point is a saddle
point, and this method is also referred to as the saddle point method.

The reason for choosing C to be the path of steepest descents is that, for
large |ζ|, most of the contribution comes from the immediate neighborhood of
the saddle point. Then we can make use of the approximation above, so that
we approximate the Airy function by

Ai(ζ) ∼ 1

2πi
e−

2

3
ζ

3

2

∫

C

dξ e
√

ζξ2

, (9.8)

where the integral is just a Gaussian one,
∫

C

dξ e
√

ζξ2

= ζ−
1

4

∫ i∞

−i∞

du eu2

= iζ−
1

4

∫ ∞

−∞

dt e−t2 = iζ−
1

4

√
π. (9.9)

Thus we obtain the leading asymptotic behavior of the Airy function

Ai(ζ) ∼ 1

2
√

π
ζ−

1

4 e−
2

3
ζ

3

2 , ζ → ∞. (9.10)

This result is actually valid for complex values of ζ subject to the restriction

| arg ζ| < π. (9.11)

This asymptotic approximation is really quite good for modest ζ as Fig. 9.3
shows.

9.1.1 Asymptotic series

Let us calculate the corrections to this result. We return to Eq. (9.7) and keep
the next term in ξ:

φ(z) = −2

3
ζ3/2 + ζ1/2ξ2 − 1

3
ξ3, (9.12)

which is exact in this case. Thus the Airy function is exactly represented by the
integral

Ai(ζ) =
1

2πi

∫ i∞

−i∞

dξ e−
2

3
ζ3/2

eζ1/2ξ2

e−
1

3
ξ3

. (9.13)
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Figure 9.3: The Airy function Ai(x) compared with the asymptotic approxima-
tion (9.10), denoted f(x), and the relative error of the latter, denoted r(x). The
error is less than 10% even for x as small as 1.
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We approximate this by expanding the last exponential, since for large ζ the
integrand is dominated by small ξ. Expanding out to fourth order, and omitting
odd terms, we have after substituting ξ = iuζ−1/4:

Ai(ζ) ∼ ζ−1/4

2π
e−

2

3
ζ3/2

∫ ∞

−∞

du e−u2

(

1 − 1

18

u6

ζ3/2
+

1

24

1

81

u12

ζ3
+ . . .

)

. (9.14)

The integrals may be evaluated starting from

∫ ∞

−∞

du e−λu2

=

√

π

λ
, (9.15)

so

∫ ∞

−∞

du u2ke−λu2

=

(

− d

dλ

)k ∫ ∞

−∞

du e−λu2

=
√

π
(2k − 1)!!

2k

1

λ(2k+1)/2
. (9.16)

Thus, the two leading corrections to the asymptotic expression for the Airy
function given in Eq. (9.10) are

Ai(ζ) ∼ 1

2
√

π
ζ−1/4e−

2

3
ζ3/2

[

1 − 5

48

1

ζ3/2
+

385

4608

1

ζ3
+ . . .

]

, (9.17)

which is the beginning of an asymptotic series expansion in powers of ζ−3/2.

9.2 Synchrotron Radiation

A charged particle moving in a circular orbit emits electromagnetic radiation
called (for the machine in which such radiation was first observed) synchrotron

radiation. For details of the theory, see, for example, J. Schwinger, L. L. De-
Raad, Jr., K. A. Milton, and W.-y. Tsai, Classical Electrodynamics (Perseus,
1998), p. 401 ff. In particular, the power radiated in the mth harmonic of the
frequency of revolution of the charged particle moving in a circle with speed
v = βc is, in part, proportional to

J ′

2m(2mβ) = −
∫ π

0

dφ

π
sinφ sin 2m(β sin φ − φ). (9.18)

In the ultrarelativistic limit when β → 1, most of the radiation occurs for large
harmonic numbers, m ≫ 1, and the main contribution comes from the region
near φ = 0. Therefore, we may expand the integrand in Eq. (9.18) as follows:

sin φ sin 2m(β sin φ − φ) ≈ φ sin 2m

(

β

[

φ − φ3

3!

]

− φ

)

= φ sin

(

2m

[

−φ(1 − β) − 1

6
βφ3

])

≈ −φ sin

(

m

[

(1 − β2)φ +
1

3
φ3

])
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= −
√

1 − β2 x sin

[

m(1 − β2)3/2

(

x +
1

3
x3

)]

,

(9.19)

where we have introduced the change of scale

φ =
√

1 − β2 x. (9.20)

As a result, in this limit, Eq. (9.18) can be approximated by2

J ′

2m(2mβ) ∼ (1 − β2)

∫ ∞

0

dx

π
x sin

(

m(1 − β2)3/2

(

x +
1

3
x3

))

=
(1 − β2)

π
Im

∫ ∞

0

dxx eim(1−β2)3/2(x+x3/3). (9.21)

For m fixed and β approaching unity in such a way that m(1− β2)3/2 ≪ 1, the
significant contribution to Eq. (9.21) comes from the region where x is large,
and Eq. (9.21) reduces to

J ′

2m(2mβ) ∼ (1 − β2)

∫ ∞

0

dx

π
x sin

(m

3
(1 − β2)3/2x3

)

=

∫ ∞

0

dφ

π
φ sin

(m

3
φ3

)

, (9.22)

where all reference to the speed of the particle has disappeared. By changing
variables, we may write this as

J ′

2m(2m) ∼ −Im

∫ ∞

0

dφ

π
φ e−imφ3/3

= −Im

(

3

m

)2/3
e−iπ/3

π

∫ ∞

0

dt

(

1

3
t−2/3

)

t1/3e−t

= −Im

(

3

m

)2/3
Γ(2/3)

3π
e−iπ/3

=
31/6

2π

Γ(2/3)

m2/3
, for m ≫ 1. (9.23)

In the above evaluation, we have used Cauchy’s theorem to perform a change of
contour, as shown in Fig. 9.4, and have used the definition of the gamma function
(8.69). Notice that Eq. (9.23) is valid for m either integer or half-integer.

However, for sufficiently large m, the parameter m(1−β2)3/2 becomes large,
and the integrand in Eq. (9.21) undergoes rapid oscillations in x except near
the stationary points, which satisfy

d

dx

(

x +
1

3
x3

)

= 1 + x2 = 0; (9.24)

2Evidently, this integral is related to that defining the Airy function, Eq. (9.1).
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Figure 9.4: Change of contour used in evaluating Eq. (9.23).
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Figure 9.5: Stationary phase contour for evaluation of (9.21).

that is, the stationary phase points are located at

x = ±i. (9.25)

By extending the region of integration from −∞ to +∞, we evaluate Eq. (9.21)
asymptotically by following the standard procedure of the saddle point method
(or the method of steepest descents). We deform the contour of integration so
that it passes through the stationary point x = i, because then the dominant
contribution comes from the vicinity of that point. (See Fig. 9.5.) In the
neighborhood of x = i, we let

x = i + ξ, (9.26)

where ξ is real, to take advantage of the saddle point character. For arbitrary ξ

x +
1

3
x3 = (i + ξ) +

1

3
(i + ξ)3 = i

(

2

3
+ ξ2

)

+
1

3
ξ3, (9.27)

so that for small ξ, if we drop the cubic term in ξ, the exponential factor in
Eq. (9.21) becomes

e−
2

3
m(1−β2)3/2

e−m(1−β2)3/2ξ2

, (9.28)

which falls off exponentially on both sides of x = i. The resulting Gaussian
integral in (9.21) leads to the following asymptotic form:

J ′

2m(2mβ) ∼ 1

2

(1 − β2)1/4

√
πm

e−
2

3
m(1−β2)3/2

, m(1 − β2)3/2 ≫ 1. (9.29)
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Thus, for very large harmonic numbers, the power spectrum3 decreases expo-
nentially in contrast to the behavior for smaller values of m where it increases
like m1/3. The transition between these two regimes occurs near the critical
harmonic number, mc , for which

mc(1 − β2)3/2 ≡ 1, (9.31)

or

mc = (1 − β2)−3/2 =

(

E

µc2

)3

, (9.32)

which uses the relativistic connection between the energy and the rest mass
µ, E = µc2(1 − β2)−1/2. The bulk of the radiation is emitted with harmonic
numbers near mc. The qualitative shape of the spectrum is shown in Fig. 9.6.

9.2.1 First correction

Corrections to the formula (9.29) may be computed by retaining the ξ3 term,
but treating it as small, so the correction may be obtained by Taylor expanding
the exponential:

J ′

2m(2mβ) ∼ 1 − β2

2π
Im e−

2

3
m(1−β2)3/2

∫ ∞

−∞

dξ e−m(1−β2)3/2ξ2

(i + ξ)

×
(

1 + im(1 − β2)3/2 ξ3

3
− 1

2
m2(1 − β2)3

ξ6

9
+ . . .

)

=
1 − β2

2π
e−

2

3
m(1−β2)3/2

(1 − β2)−3/4m−1/2

∫ ∞

−∞

dt e−t2

×
(

1 +
1

3

t4

m(1 − β2)3/2
− 1

18

t6

m(1 − β2)3/2
+ . . .

)

. (9.33)

Here we noted that the imaginary part only receives the contribution of the
even terms in ξ, which are all that survive symmetric integration. Finally, the
Gaussian integrals are evaluated according to

∫ ∞

−∞

dt t2n e−t2 =

∫ ∞

0

dx√
x

xn e−x = Γ

(

n +
1

2

)

, (9.34)

where

Γ

(

5

2

)

=
3
√

π

4
, Γ

(

7

2

)

=
15

√
π

8
. (9.35)

3The power radiated into the mth harmonic by a particle of charge e moving in a circle of
radius R with angular frequency ω0 is given by

Pm =
e2

R
mω0

[

2β2J ′

2m(2mβ) − (1 − β2)

∫

2mβ

0

dx J2m(x)

]

(9.30)

The two terms in the square brackets have similar asymptotic behavior.
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Figure 9.6: Sketch of power emitted into mth harmonic as a function of m.
What is actually plotted is 2mJ ′

2m(2mβ) for β = 0.99. In this case mc = 356.
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Thus

J ′

2m(2mβ) =
(1 − β2)1/4

2
√

mπ
e−

2

3
m(1−β2)3/2

×
[

1 +
7

48

1

m(1 − β2)3/2
+ O

(

1

m2(1 − β2)3

)]

. (9.36)


