
Chapter 8

Summation Techniques,

Padé Approximants, and

Continued Fractions

8.1 Accelerated Convergence

Conditionally convergent series, such as
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2
+

1

3
− 1

4
+
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5
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6
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∞
∑
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(−1)n+1 1

n
= ln 2, (8.1)

converge very slowly. The same is true for absolutely convergent series, such as

∞
∑

n=1

1

n2
= ζ(2) =

π2

6
. (8.2)

If we call the partial sum for the latter

N
∑

n=1

1

n2
= SN , (8.3)

the difference between the limit S and the Nth partial sum is

S − SN =

∞
∑

n=N+1

1

n2
≈

∫

∞

N

dn

n2
=

1

N
, (8.4)

which means that it takes 106 terms to get 6-figure accuracy.
Thus, to evaluate a convergent series, the last thing you want to do is actually

literally carry out the sum. We need a method to accelerate the convergence,
and get good accuracy from a few terms in the series. There are several standard
methods.
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8.1.1 Shanks’ Transformation

The Shanks transformation is good for alternating series, or oscillating partial
sums, such as Eq. (8.1). For the series

S =

∞
∑

n=1

an, (8.5)

consider the Nth partial sum

SN =

N
∑

n=1

an. (8.6)

Let us suppose that, for sufficiently large N ,

SN = S + AbN , (8.7)

where −1 < b < 0, so that as N → ∞, SN → S. We will take this as an ansatz
for all N , to obtain an estimate for the limit S. Then, successive partial sums
satisfy

SN−1 = S + AbN−1, (8.8a)

SN = S + AbN , (8.8b)

SN+1 = S + AbN+1, (8.8c)

so that

b =
SN+1 − S

SN − S
=

SN − S

SN−1 − S
, (8.9)

which may be immediately solved for S,

S(N) =
SN+1SN−1 − S2

N

SN+1 + SN−1 − 2SN
, (8.10)

where now we’ve inserted the (N) subscript on the left to indicate this is an
estimate for the limit, based on the N , N + 1, and N − 1 partial sums.

For the series (8.1) the first 5 partial sums are

S1 = 1, S2 =
1

2
= 0.5, S3 =

5

6
= 0.833, S4 =

7

12
= 0.5833,

S5 =
47

60
= 0.7833, (8.11)

which oscillate around the correct limit ln 2 = 0.693147, but are not good ap-
proximations. Using the Shanks transformation (8.10) we obtain much better
approximants:

S(1) =
7

10
= 0.700, S(2) =

29

42
= 0.690, S(3) =

25

36
= 0.6944, (8.12)
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which use only the first 3, 4, and 5 terms in the original series. We can do even
better by iterating the Shanks transformation,

S
[2]
(N) =

S(N+1)S(N−1) − S2
(N)

S(N+1) + S(N−1) − 2S(N)
, (8.13)

and then we find using the same data (only 5 terms in the series)

S
[2]
(2) =

165

238
= 0.693277, (8.14)

an error of only 0.02%! For more detailed comparison of Shanks estimates for
this series, see Table 8.2 on page 373 of Bender and Orzag.

8.1.2 Richardson Extrapolation

For monotone series, Richardson extrapolation is often very useful. In this case
we are considering partial sums SN which approach their limit S monotonically.
In this case we assume an asymptotic form for large N

SN ∼ S +
a

N
+

b

N2
+

c

N3
+ . . . . (8.15)

The first Richardson extrapolation consists of keeping only the first correction
term,

SN = S +
a

N
, SN+1 = S +

a

N + 1
, (8.16)

which may be solved for the limit

S
[1]
(N) = (N + 1)SN+1 − NSN , (8.17)

where again we’ve inserted on the left a superscript [1] indicating the first
Richardson extrapolation, and a subscript (N) to indicate the approximant
comes from the Nth and N + 1st partial sums.

We consider as an example Eq. (8.2). Here, the first 4 partial sums are

S1 = 1, S2 =
5

4
= 1.25, S3 =

49

16
= 1.361, S4 =

205

144
= 1.424, (8.18)

to be compared with π2/6 = 1.644934. The first three Richardson extrapolants
are much better:

S
[1]
(1) =

3

2
= 1.5, S

[1]
(2) =

19

12
= 1.58, S

[1]
(3) =

29

18
= 1.611. (8.19)

Iteration of these results by inserting S
[1]
(N) in (8.17) yields further improvement:

5/3 = 1.667, but this iteration improves only slowly with N .
To do better we keep the first two terms in (8.15). This gives the second

Richardson extrapolant,

S
[2]
(N) =

1

2

[

(N + 2)2SN+2 − 2(N + 1)2SN+1 + N2SN

]

. (8.20)
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When applied to the series (8.2) the first three terms in the series yields nearly
1% accuracy:

S
[2]
(1) =

13

8
= 1.625. (8.21)

For further numerical details, see Table 8.4 on page 377 of Bender and Orzag.

8.2 Summing Divergent Series

The series encountered in physics, typically perturbation expansions, are usually
divergent. How can one extract a meaningful number from such series, which
represent physical processes and so reflect real processes?

On the surface, it would seem impossible to attach any meaning to such
obviously divergent series as

1 + 1 + 1 + 1 + 1 + . . . , (8.22a)

1 − 1 + 1 − 1 + 1 − . . . . (8.22b)

However, as we will now see, perfectly finite numbers can be associated with
these series. Again there are various procedures, of which we give a sampling.
Throughout, we are considering a divergent series of the form

∞
∑

n=0

an. (8.23)

8.2.1 Euler Summation

Suppose
∞
∑

n=0

anxn = f(x) (8.24)

converges if |x| < 1. Then we define the limit of the series (8.23) by

S = lim
x→1

f(x). (8.25)

Thus, for the series (8.22b),

S =

∞
∑

n=0

(−1)n, (8.26)

f(x) is

f(x) =

∞
∑

n=0

(−1)nxn =
1

1 + x
, (8.27)

so S = 1/2. To supply more credence to this result, we note that it is reproduced
by the Shanks transformation. The partial sums of the series are

S0 = 1, S1 = 0, S2 = 1, S3 = 0, . . . , (8.28)
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so

S =
SN+1SN−1 − S2

n

SN+1 + SN−1 − 2Sn
=

1

2
(8.29)

for all N .
What if we apply Euler summation to the series

1 + 0 − 1 + 1 + 0 − 1 + 1 + 0 − 1 + 1 + 0 − 1 + . . .? (8.30)

Now

f(x) = 1 − x2 + x3 − x5 + x6 − x8 + x9 − . . .

=

∞
∑

n=0

x3n − x2
∞
∑

n=0

x3n

=
1 − x2

1 − x3
=

1 + x

1 + x + x2
, (8.31)

so the sum of (8.30) is

S = f(1) =
2

3
. (8.32)

Thus the process of summation is not (infinitely) associative. In this case the
Shanks transformation does not work.

8.2.2 Borel Summation

Now we use the Euler representation of the Gamma function, or the factorial,

n! =

∫

∞

0

dt tne−t. (8.33)

Then we formally interchange summation and integration:

S =

∞
∑

n=0

an
1

n!

∫

∞

0

dt tne−t =

∫

∞

0

dt e−t
∞
∑

n=0

1

n!
antn, (8.34)

which defines the sum if

g(t) =

∞
∑

n=0

1

n!
antn (8.35)

exists.
Thus for (8.22b),

g(t) =
∞
∑

n=0

(−1)n tn

n!
= e−t, (8.36)

and so

S =

∫

∞

0

dt e−2t =
1

2
, (8.37)
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which coincides with the result found by Euler summation. In general, Borel
summation is more powerful than Euler summation, but if both Euler and Borel
sums exist, they are equal.

In fact, we can prove that any summation that is both

1. linear, meaning that if

∞
∑

n=0

an = A,

∞
∑

n=0

bn = B, (8.38a)

then
∞
∑

n=0

(αan + βbn) = αA + βB, (8.38b)

and

2. satisfies
∞
∑

n=0

an = a0 +

∞
∑

n=1

an, (8.39)

is unique. In fact, from these two properties alone (which are satisfied by both
Euler and Borel summation) we can find the value of the sum. Thus for example,

1− 1+1− 1+1− 1+ . . . = S = 1− (1− 1+1− 1+1− 1+ . . .) = 1−S, (8.40)

implies S = 1/2. Slightly more complicated is

S = (1 + 0 − 1 + 1 + 0 − 1 + 1 + 0 − 1 + . . .)

= 1 + (0 − 1 + 1 + 0 − 1 + 1 + 0 − 1 + . . .)

= 1 + 0 + (−1 + 1 + 0 − 1 + 1 + 0 − 1 + 1 + 0 − . . .), (8.41)

where adding the three lines gives

3S = 2 + (0 + 0 + 0 + 0 + 0 + . . .) = 2, (8.42)

or S = 2/3 as before.
But there are sums resistant to such schemes. An example is (8.22a), because

the above process leads to

S = 1 + (1 + 1 + 1 + . . .) = 1 + S, (8.43)

which is only satisfied by S = ∞. Yet such a series can be summed.

8.2.3 Zeta-function Summation

Recall that the zeta function is defined by

ζ(s) =

∞
∑

n=1

1

ns
, Re s > 1. (8.44)
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In fact, ζ(s) exists for all s 6= 1, so we can use that function to define the sum
almost everywhere in the complex s plane. In particular, for s = 0:

1 + 1 + 1 + 1 + . . . = ζ(0) = −1

2
. (8.45)

Even a more divergent sum can be evaluated this way:

∞
∑

n=1

n = ζ(−1) = − 1

12
. (8.46)

Note the remarkable fact that these sums are not only finite, but negative, even
though each term in the sum is positive!

8.2.4 Casimir Effect

Here we give a physical example of the utility of this last mode of summation.
The physics is that of a pair of parallel metallic plates, separated by a distance
a in the vacuum. Because the plates modify the properties of the vacuum, there
is a change in the zero-point energy of the electromagnetic field, which feels the
plates because they are conductors. The result is an attraction between the
plates, the famous Casimir effect, predicted by Casimir in 1948 (the same year
that Schwinger discovered how to renormalize quantum electrodynamics), and
now verified by many experiments at the percent level. The zero-point energy
(per unit area) of modes confined by the plane boundaries at z = 0 and z = a
is

E =
1

2

∑

h̄ω =
h̄c

2

∞
∑

n=1

∫

d2k

(2π)2

√

k2 +
(nπ

a

)

, (8.47)

where in the mode sum we have integrated over the two transverse wavenumbers
kx and ky, and summed over the discrete modes, which, say, must vanish at z = 0
and a, that is, be given by an (unnormalized) mode function

φ(z) = sin
nπ

a
z. (8.48)

Now we write the square root as integral, putting its argument in the exponen-
tial:

√

k2 +
(nπ

a

)2

=
1

Γ
(

− 1
2

)

∫

∞

0

ds

s
s−1/2e−(k2+(nπ/a)2)s, (8.49)

and then interchange the two integrals:

E =
h̄c

2

∞
∑

n=1

∫

∞

0

ds

s3/2
e−(nπ/a)2s

(
∫

∞

−∞

dk

2π
e−k2s

)2
1

−2
√

π
. (8.50)

Here we have recognized that the two-dimensional integral over k = (kx, ky) can
be broken into the product of two one-dimensional integrals because

e−(k2
x+k2

y)s = e−k2
xse−k2

ys. (8.51)
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These one-dimensional integrals are simply Gaussians, so the squared factor in
(8.50) is simply 1/(4πs). The remaining s-integral is again a gamma function:

E = − h̄c

16π3/2

∞
∑

n=1

∫

∞

0

ds

s5/2
e−(nπ/a)2s

= − h̄c

16π3/2
Γ

(

−3

2

)

∞
∑

n=0

(nπ

a

)3

= − h̄cπ2

1440a3
, (8.52)

where we have used the facts that

Γ

(

−3

2

)

=
4

3

√
π, ζ(−3) =

1

120
, (8.53)

together with the zeta-function continuation embodied in Eq. (8.44) When
multiplied by 2, for the two polarization states of the photon, this is exactly
Casimir’s result, which implies an attractive force per unit area between the
plates,

P = − ∂

∂a
E = − h̄cπ2

240a4
= −1.30× 10−27N m2/a4. (8.54)

8.3 Padé Approximants

Consider a partial Taylor sum,

TN+M (z) =
N+M
∑

n=0

anzn, (8.55)

which is an N + Mth degree polynomial. Write this in a rational form,

PN
M (z) =

∑N
n=0 Anzn

∑M
m=0 Bmzm

, (8.56)

which is called the [N, M ]th Padé approximant. Here the coefficients are de-
termined from the Taylor series coefficients as follows: We set B0 = 1, and
determine the (N +M +1) coefficients A0, A1, . . . , AN and B1, B2, . . . , BM by
requiring that when the rational function (8.56) be expanded in a Taylor series
about z = 0 the first N + M + 1 coefficients match those of the original Taylor
expansion (8.55).

Example

Consider the exponential function

ez = 1 + z +
1

2
z2 + . . . . (8.57)
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The [1, 1] Padé of this is of the form

P 1
1 (z) =

A0 + A1z

1 + B1z
, (8.58)

which, when expanded in a series about z = 0 reads

P 1
1 (z) ≈ A0 + (A1 − B1A0)z + (B2

1A0 − A1B1)z
2. (8.59)

Matching this with Eq. (8.57), we obtain the equations

A0 = 1, (8.60a)

A1 − B1A0 = 1, (8.60b)

B1(B1A0 − A1) =
1

2
, (8.60c)

so we learn immediately that

A0 = 1, B1 = −1

2
, A1 =

1

2
, (8.61)

so the [1, 1] Padé is

P 1
1 (z) =

1 + 1
2z

1 − 1
2z

. (8.62)

How good is this? For example, at z = 1,

P 1
1 (1) = 3, (8.63)

which is 10% larger than the exact answer e = 2.718281828 . . ., and is not quite
as good as the result obtained from the first three terms in the Taylor series,

1 + z +
1

2
z2

∣

∣

∣

∣

z=1

= 2.5, (8.64)

about 8% low. However, in higher orders, Padé approximants rapidly outstrip
Taylor approximants. Table 8.1 compares the numerical accuracy of PM

N with
TN+M .

Note that typically the Padé approximant, obtained from a partial Taylor
sum, is more accurate than the latter. This comes at a price, however; the Padé,
being a rational expression, has poles, which are not present in the original
function. Thus, ez is an entire function, while the [1, 1] Padé approximant of
this function has a pole at z = 2.

Example

Here’s another example:

1

z
log(1 + z) = 1 − z

2
+

z2

3
− z3

4
+

z4

5
− z5

6
+ . . . . (8.65)
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TN+M (1) PN
M (1) Relative error of Padé

T3(1) = 2.667 P 1
2 (1) = 2.667 −1.9%

T4(1) = 2.708 P 2
2 (1) = 2.71429 −0.15%

T5(1) = 2.717 P 2
3 (1) = 2.71875 +0.017%

T6(1) = 2.71806 P 3
3 (1) = 2.71831 +0.00103%

T7(1) = 2.71825 P 3
4 (1) = 2.71827957 −0.000083%

Table 8.1: Comparison of partial Taylor series with successive Padé approxi-
mants for the exponential function, evaluated at z = 1. Note that precisely the
same data is incorporated in TN+M and in PN

M .

Approximant z = 0.5 z = 1 z = 2

Exact 0.810930216 0.69314718 0.549306
P 3

3 0.810930365 0.69315245 0.549403
P 3

4 0.810930203 0.69314642 0.549285

Table 8.2: Padé approximations for the function (1/z) log(1+z) compared with
the exact values. Note that the Taylor series for this function has a radius of
convergence of unity, yet the Padé approximations converge rapidly even beyond
the circle of convergence.

It is a simple algebraic task to expand the form of an [N, M ] Padé in a Taylor
series and compute the Padé coefficients by matching with the above. This
can, of course, be easily implemented in a symbolic program. For example, in
Mathematica,

PN
M (z) = PadeApproximant[f [z], {z, 0, {N, M}}]. (8.66)

Doing so here yields

P 3
3 (z) =

1 + 17
14z + 1

3z2 + 1
140z3

1 + 12
7 z + 6

7z2 + 4
35z3

. (8.67)

Table 8.2 shows representative numerical values for P 3
3 and P 3

4 . The Padé
approximants rapidly converge to the correct value even well beyond the circle
of convergence of the original series. Note further in this example that

• PN
N is larger than the function, and decreases monotonically toward it,

and
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• PN
N+1 is smaller than the function, and increases monotonically toward it.

This bounding behavior is typical of a class of functions. For more detail see
C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists

and Engineers (McGraw-Hill, New York, 1978), pp. 383ff.

Field Theory Examples

The following function occurs in the field theory of a massless particle in zero
dimensions,

Z(δ) =

∫

∞

−∞

dx√
π

e−(x2)1+δ

=
2√
π

1

(2 + 2δ)

∫

∞

0

dt

t
t1/(2+2δ)e−t =

2√
π

1

(2 + 2δ)
Γ

(

1

2 + 2δ

)

=
2√
π

Γ

(

3 + 2δ

2 + 2δ

)

, (8.68)

where the gamma function was defined by Euler as

Γ(z) =

∫

∞

0

dt

t
tz e−t, (8.69)

and satisfies the identity

Γ(z + 1) = zΓ(z). (8.70)

The gamma function generalizes the factorial to complex values:

Γ(n + 1) = n!, n = 0, 1, 2, . . . . (8.71)

Because the gamma function Γ(z) has poles when z = −N , N = 0, 1, 2, . . . , this
function has an infinite number of singularities between δ = −3/2 and δ = −1.
Thus the radius of convergence of the Taylor series about δ = 0 is 1. Yet low
order Padé’s for E(δ) = − logZ(δ) give an excellent approximation well outside
of this radius, as Table 8.3 shows.

The “partition function” for a zero-dimensional field theory with a mass µ
is given by the function

Z(δ) = µ

√

2

π

∫

∞

0

dx e−
µ2

2
x2

−λ(x2)1+δ

. (8.72)

We consider two cases. If µ2 > 0, the power series in δ again has radius of
convergence 1, but the Padé approximants are accurate far beyond this radius,
as shown in Table 8.4.

If, on the other hand µ2 < 0 (which corresponds to the “Higgs mechanism” in
particle physics), the Taylor series converges nowhere, yet the Padé approximant
is still quite good, as seen in Table 8.5.
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δ T10(δ) T20(δ) P 3
2 (δ) P 5

4 (δ) E(δ)

−2.0 −1266.97 −2.0 × 106 −0.651267 −0.692962 −0.693147
−0.5 −0.120055 −0.120781 −0.120831 −0.12078223848 −0.12078223764
0.5 −0.00781712 −0.00759091 −0.00759097 −0.0075905958951 −0.0075905958949
1.0 −0.367098 −0.516940 −0.0225167 −0.022510401233 −0.022510401213
2.0 −465.821 −688611 −0.0458145 −0.04575620415 −0.04575620349
5.0 −5.5 × 106 −7.8 × 1013 −0.0786672 −0.078172915 −0.078172899

Table 8.3: Approximations to the function (8.68). What is approximated is
E(δ) = − log Z(δ). The Padé approximants based on 6 and 10 terms in the
Taylor series of this function are far more accurate that the 10 and 20 term
truncated Taylor series, and even are remarkably accurate far outside the circle
of convergence, where the Taylor series is meaningless.

δ T8(δ) P 4
4 (δ) Z(δ)

0.5 1.04631 1.04630 1.04630
1.0 1.07719 1.07436 1.07436
2.0 1.81047 1.10647 1.10649
5.0 745.176 1.14253 1.14285

Table 8.4: Comparison of Z(δ), Eq. (8.72), µ2 > 0, with the 8-term truncated
power series, and the corresponding [4, 4] Padé. Here we have taken µ2 = 1,
λ = 1.

δ T8(δ) P 4
4 (δ) Z(δ)

0.1 0.94808 0.94790 0.94790
0.5 137.697 0.88388 0.88381
1.0 40109.3 0.87323 0.87253
2.0 1.1 × 107 0.88334 0.87974
5.0 1.8 × 1010 0.91830 0.90517

Table 8.5: Comparison of Z(δ), Eq. (8.72), µ2 < 0, with the 8-term truncated
power series, and the corresponding [4, 4] Padé. Here we have taken µ2 = −1,
λ = 1.
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8.4 Continued Fractions

8.4.1 Number Theory

The most familiar way of representing real numbers is in terms of a decimal
fraction, which is nonterminating and nonrepeating if the number is irrational.
However, there are other representations which, if less familiar, can be very
useful. For example, the base of the natural logarithms e can be written in the
form of a continued fraction,

e = 2 +
1

1 + 1
2+ 1

1+ 1

1+ 1
4+...

. (8.73a)

Because this built-up form is cumbersome to write, we could write this as

e = 2+1/(1+1/(2+1/(1+1/(1+1/(4+1/(1+1/(1+1/(6+1/(1+1/(1+ . . . ,
(8.73b)

or even more compactly as

e = 2 +
1

1+

1

2+

1

1+

1

1+

1

4+

1

1+

1

1+

1

6 + . . .
. (8.73c)

The form seen here is the representation of a real number x in the form

x = a0 +
1

a1+

1

a2+

1

a3+

1

a4 + . . .
, (8.74)

where the numbers an are integers called partial quotients. The rational number
formed by including only the first n+1 partial quotients a0, a1, . . . , an is called
the n convergent of x. So the continued fraction is given by the set of ans:

e = {2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, . . .}, (8.75)

and the successive convergents, which rapidly approach e = 2.718281828 . . ., are

{

2, 3,
8

3
,
11

4
,
19

7
,
87

32
,
106

39
,
193

71
,
1264

465
,
1457

536
,
2721

1001
,
23225

8544
,
25946

9545
,
49171

18089
, . . .

}

= {2, 3, 2.666666667, 2.750000000, 2.714285714, 2.718750000, 2.717948718,

2.718309859.2.718279570, 2.718283582, 2.718281718, 2.718281835,

2.718281823, 2.718281829, 2.718281828, . . .} . (8.76)

The partial quotients of x are determined by successively determining the
unique integer that provides a bound for x for a given truncation of the partial
fraction. Thus in the above example, where in each case 0 < r < 1,

2 < e, (8.77a)

5

2
< 2 +

1

1 + r
< 3, (8.77b)
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8

3
< 2 +

1

1+

1

2 + r
<

11

4
, (8.77c)

19

7
< 2 +

1

1+

1

2+

1

1 + r
<

11

4
, (8.77d)

19

7
< 2 +

1

1+

1

2+

1

1+

1

1 + r
<

30

11
, (8.77e)

and so on. The successive convergents are the upper and lower bounds corre-
sponding to r = 0.

The partial fraction representation of real numbers can be generated using
your favorite symbolic program. For example, in Mathematica the first n partial
quotients of x are given by

ContinuedFraction[x, n], (8.78)

and the first n convergents are given by

Convergents[x, n]. (8.79)

Let us conclude this subsection with the following comments.

• Evidently, a rational number is represented by a terminating continued
fraction. For example,

12357

1234567890
= {0, 99908, 2, 1, 1, 1, 1, 3, 3, 2, 1, 2} (8.80)

exactly.

• An algebraic number, that is one which is a solution of an algebraic equa-
tion, which is not rational, is represented by a repeating pattern of partial
quotients. For example,

√
137 = {11, 1, 2, 2, 1, 1, 2, 2, 1, 22, 1, 2, 2, 1, 1, 2, 2, 1, 22, . . .}. (8.81)

• A trancendental number is represented by a nonrepeating pattern. That
pattern is simple in the case of e, but not so for the case of π:

π = {3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15,

3, 13, 1, 4, 2, 6, 6, 99, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1, 7, 1, 2, 3, 7, . . .}.(8.82)

The first few convergents are

π = {3, 3.14285714, 3.141509434, 3.141592920, 3.141592653, 3.141592654, . . .},
(8.83)

so ten figure accuracy requires 6 terms. However, there are other continued
fraction representations for π that have simple patterns:

4

1+

12

2+

32

2+

52

2+

72

2 + . . .
, (8.84)
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which has rather poor partial sums:

π = {4, 2.6667, 3.4667, 2.89524, 3.33968, . . .}; (8.85)

π = 3 +
1

6+

32

6+

52

6+

72

6 + . . .
, (8.86)

where the convergents are somewhat better

π = {3, 3.16667, 3.13333, 3.14524, 3.13968, 3.14271, . . .}; (8.87)

π =
4

1+

12

3+

22

5+

32

7 + . . .
, (8.88)

which is comparable,

π = {4, 3, 3.16667, 3.13725, 3.14234, . . .}. (8.89)

All of these are much worse than the rapid convergence of the standard
convergents. But it is the existence of simple patterns that is perhaps
remarkable.

8.4.2 Continued Fraction Representation of Functions

If a function is represented by a power series about the origin,

f(x) =

∞
∑

n=0

anxn, (8.90)

we can also write it in a continued-fraction form. The standard approach here
is to write

f(x) =
b0

1 + b1x

1+
b2x

1+
b3x

1+
b4x

1+...

=
b0

1+

b1x

1+

b2x

1+

b3x

1+

b4x

1 + . . .
. (8.91)

Evidently, there is a one-to-one correspondance between the Taylor-series coef-
ficients {an} and the continued-fraction coefficients {bn}, which may be deter-
mined by expanding the continued fraction in a power series for small x. The
theory of such a representation is discussed also in the book by Bender and
Orzag.

Let us consider a function with the property f(0) = 1; this is merely a
convenient choice of normalization. Then the relation between the continued
fraction coefficients and the series coefficients is easily found to be

a0 = b0 = 1, (8.92a)

a1 = −b1, (8.92b)

a2 = b1(b1 + b2), (8.92c)

a3 = −b1[b2b3 + (b1 + b2)
2], (8.92d)

a4 = b1[b2b3(b3 + b4) + 2(b1 + b2)b2b3 + (b1 + b2)
3], (8.92e)
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and so on. This constitutes a nonlinear mapping from the set of numbers {bn}
to the set {an} or vice versa.

This mapping seems to be quite remarkable in that the sequence of bns is
typically much simpler than the sequence of ans. Here are some examples:

Example 1

Let bn = n, that is, b1 = 1, b2 = 2, etc. Then by computing the first few ans
from the above formulæ we find

bn = n ⇒ |an| = (2n − 1)!!. (8.93)

Example 2

Let the continued-fraction sequence be {bn} = {1, 1, 2, 2, 3, 3, 4, 4, . . .}. Then
the power series coefficients are given by the factorial,

|an| = n!. (8.94)

Example 3

What if bn = n2? The first few an are

a1 = −1, (8.95a)

a2 = 5, (8.95b)

a3 = −61, (8.95c)

a4 = 1385. (8.95d)

These are recognized as the first few Euler numbers, defined by the generating
function

1

cosh t
=

∞
∑

n=0

En
tn

n!
, (8.96)

namely

E0 = 1, (8.97a)

E2 = −1, (8.97b)

E4 = 5, (8.97c)

E6 = −61, (8.97d)

E4 = 1385, (8.97e)

and we conclude

an = E2n. (8.98)
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Example 4

This suggests that we ask what sequence of bns corresponds to the Bernoulli
numbers. It takes a bit of playing around to find the correct normalization,
which matters since the transformation is nonlinear. If we take

an = 6B2n+2, (8.99)

we find that the corresponding continued-fraction coefficients are given by

bn =
n(n + 1)2(n + 2)

4(2n + 1)(2n + 3)
. (8.100)

Although the latter seems a bit complicated, it is a closed algebraic expression.
It further grows with n as a low power. Neither of these features hold for the
Bernoulli numbers, which grow more rapidly than exponentially, and have no
closed-form representation.

These ideas are provocative, yet the general significance of these results
remains elusive. There appears also to be some deep connection to field theory.
See C. M. Bender and K. A. Milton, J. Math. Phys. 35, 364 (1994) for more
details.


