
Chapter 11

Green’s Functions

11.1 One-dimensional Helmholtz Equation

Suppose we have a string driven by an external force, periodic with frequency
ω. The differential equation (here f is some prescribed function)

(

∂2

∂x2
− 1

c2
∂2

∂t2

)

U(x, t) = f(x) cosωt (11.1)

represents the oscillatory motion of the string, with amplitude U , which is tied
down at both ends (here l is the length of the string):

U(0, t) = U(l, t) = 0. (11.2)

We seek a solution of the form (thus we are ignoring transients)

U(x, t) = u(x) cosωt, (11.3)

so u(x) satisfies
(

d2

dx2
+ k2

)

u(x) = f(x), k = ω/c. (11.4)

The solution to this inhomogeneous Helmholtz equation is expressed in terms of
the Green’s function Gk(x, x′) as

u(x) =

∫ l

0

dx′Gk(x, x′)f(x′), (11.5)

where the Green’s function satisfies the differential equation

(

d2

dx2
+ k2

)

Gk(x, x′) = δ(x− x′). (11.6)
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As we saw in the previous chapter, the Green’s function can be written down
in terms of the eigenfunctions of d2/dx2, with the specified boundary conditions,

(

d2

dx2
− λn

)

un(x) = 0, (11.7a)

un(0) = un(l) = 0. (11.7b)

The normalized solutions to these equations are

un(x) =

√

2

l
sin

nπx

l
, λn = −

(nπ

l

)2

, n = 1, 2, . . . . (11.8)

The factor
√

2/l is a normalization factor. From the general theorem about
eigenfunctions of a Hermitian operator given in Sec. 10.5, we have

2

l

∫ l

0

dx sin
nπx

l
sin

mπx

l
= δnm. (11.9)

Thus the Green’s function for this problem is given by the eigenfunction expan-
sion

Gk(x, x′) =
∞
∑

n=1

2
l sin nπx

l sin nπx′

l

k2 −
(

nπ
l

)2 . (11.10)

But this form is not usually very convenient for calculation.
Therefore we solve the differential equation (11.6) directly. When x 6= x′ the

inhomogeneous term is zero. Since

Gk(0, x′) = Gk(l, x′) = 0, (11.11)

we must have

x < x′ : Gk(x, x′) = a(x′) sin kx, (11.12a)

x > x′ : Gk(x, x′) = b(x′) sin k(x− l). (11.12b)

We determine the unknown functions a and b by noting that the derivative of G
must have a discontinuity at x = x′, which follows from the differential equation
(11.6). Integrating that equation just over that discontinuity we find

∫ x′+ǫ

x′−ǫ

dx

(

d2

dx2
+ k2

)

Gk(x, x′) = 1, (11.13)

or
d

dx
Gk(x, x′)

∣

∣

∣

∣

x=x′+ǫ

x=x′−ǫ

= 1, (11.14)

because 2ǫGk(x′, x′) → 0 as ǫ → 0. Although d
dxGk(x, x′) is discontinuous at

x = x′, G(x, x′) is continuous there:

G(x′ + ǫ, x′) −G(x′ − ǫ, x′) =

∫ x′+ǫ

x′−ǫ

dx
d

dx
G(x, x′)
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=

∫ x′

x′−ǫ

dx
d

dx
G(x, x′) +

∫ x′+ǫ

x′

dx
d

dx
G(x, x′)

= ǫ

[

d

dx
G(x, x′)

∣

∣

∣

∣

x=x′−ξ

+
d

dx
G(x, x′)

∣

∣

∣

∣

x=x′+ξ̄

]

, (11.15)

where by the mean value theorem, 0 < ξ ≤ ǫ, 0 < ξ̄ ≤ ǫ. Therefore

G(x, x′)

∣

∣

∣

∣

x=x′+ǫ

x=x′−ǫ

= O(ǫ) → 0 as ǫ→ 0. (11.16)

Now using the continuity of G and the discontinuity of G′, we find two
equations for the coefficient functions a and b:

a(x′) sinkx′ = b(x′) sin k(x′ − l), (11.17a)

a(x′)k cos kx′ + 1 = b(x′)k cos k(x′ − l). (11.17b)

It is easy to solve for a and b. The determinant of the coefficient matrix is

D =

∣

∣

∣

∣

sinkx′ − sink(x′ − l)
k cos kx′ −k cos k(x′ − l)

∣

∣

∣

∣

= −k sin kl, (11.18)

independent of x′. Then the solutions are

a(x′) =
1

D

∣

∣

∣

∣

0 − sink(x′ − l)
−1 −k cos k(x′ − l)

∣

∣

∣

∣

=
sin k(x′ − l)

k sin kl
, (11.19a)

b(x′) =
1

D

∣

∣

∣

∣

sinkx′ 0
k cos kx′ −1

∣

∣

∣

∣

=
sin kx′

k sin kl
. (11.19b)

Thus we find a closed form for the Green’s function in the two regions:

x < x′ : Gk(x, x′) =
sin k(x′ − l) sinkx

k sinkl
, (11.20a)

x > x′ : Gk(x, x′) =
sin kx′ sin k(x− l)

k sinkl
, (11.20b)

or compactly,

Gk(x, x′) =
1

k sin kl
sin kx< sin k(x> − l), (11.21)

where we have introduced the notation

x< is the lesser of x, x′,

x> is the greater of x, x′. (11.22)

Note that Gk(x, x′) = Gk(x′, x) as is demanded on general grounds, as a conse-
quence of the reciprocity relation (10.110).

Let us analyze the analytic structure of Gk(x, x′) as a function of k. We see
that simple poles occur where

kl = nπ, n = ±1,±2, . . . . (11.23)
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There is no pole at k = 0. For k near nπ/l, we have

sin kl = sinnπ + (kl − nπ) cosnπ + . . . = (kl − nπ)(−1)n. (11.24)

If we simply sum over all the poles of Gk, we obtain

Gk(x, x′) =

∞
∑

n=−∞
n 6=0

(−1)n sin nπx<

l sin nπ
l (x> − l)

nπ
l (kl − nπ)

=

∞
∑

n=−∞
n 6=0

sin nπx
l sin nπx′

l

nπ
(

k − nπ
l

)

=
∞
∑

n=1

sin
nπx

l
sin

nπx′

l

1

nπ

[

1

k − nπ
l

− 1

k + nπ
l

]

=

∞
∑

n=1

2

l
sin

nπx

l
sin

nπx′

l

1

k2 −
(

nπ
l

)2 . (11.25)

This is in fact equal to Gk, as seen in the eigenfunction expansion (11.10),
because the difference is an entire function vanishing at infinity, which must be
zero by Liouville’s theorem, see Sec. 6.5.

11.2 Types of Boundary Conditions

Three types of second-order, homogeneous differential equations are commonly
encountered in physics (the dimensionality of space is not important):

Hyperbolic:

(

∇2 − 1

c2
∂2

∂t2

)

u(r, t) = 0, (11.26a)

Elliptic:
(

∇2 + k2
)

u(r) = 0, (11.26b)

Parabolic:

(

∇2 − 1

κ

∂

∂t

)

T (r, t) = 0. (11.26c)

The first of these equations is the wave equation, the second is the Helmholtz
equation, which includes Laplace’s equation as a special case (k = 0), and the
third is the diffusion equation. The types of boundary conditions, specified
on which kind of boundaries, necessary to uniquely specify a solution to these
equations are given in Table 11.1. Here by Cauchy boundary conditions we
means that both the function u and its normal derivative ∂u/∂n is specified on
the boundary. Here

∂u

∂n
= n̂ · ∇u, (11.27)

where n̂ is a(n outwardly directed) normal vector to the surface. As we have
seen previously, Dirichlet boundary conditions refer to specifying the function
u on the surface, Neumann boundary conditions refer to specifying the nor-
mal derivative ∂u/∂n on the surface, and mixed boundary conditions refer to



11.3. EXPRESSION OF FIELD IN TERMS OF GREEN’S FUNCTION127 Version of December 3, 2011

Type of Equation Type of Boundary Condition Type of Boundary

Hyperbolic Cauchy Open
Elliptic Dirichlet, Neumann, or mixed Closed

Parabolic Dirichlet, Neumann, or mixed Open

Table 11.1: Boundary conditions required for the three types of second-order
differential equations. The boundary conditions referred to in the first and third
cases are actually initial conditions.

specifying a linear combination, αu + β∂u/∂n, on the surface. If the specified
boundary values are zero, we say that the boundary conditions are homogeneous;
otherwise, they are inhomogeneous.

Example.

To determine the vibrations of a string, described by

(

∂2

∂x2
− 1

c2
∂2

∂t2

)

u = 0, (11.28)

we must specify

u(x, 0),
∂u

∂t
(x, 0) (11.29)

at some initial time (t = 0). The line t = 0 is an open surface in the (ct, x)
plane.

11.3 Expression of Field in Terms of Green’s
Function

Typically, one determines the eigenfunctions of a differential operator subject
to homogeneous boundary conditions. That means that the Green’s functions
obey the same conditions. See Sec. 10.8. But suppose we seek a solution of

(L − λ)ψ = S (11.30)

subject to inhomogeneous boundary conditions. It cannot then be true that

ψ(r) =

∫

V

(dr′)G(r, r′)S(r′). (11.31)

To see how to deal with this situation, let us consider the example of the
three-dimensional Helmholtz equation,

(∇2 + k2)ψ(r) = S(r). (11.32)
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We seek the solution ψ(r) subject to arbitrary inhomogeneous Dirichlet, Neu-
mann, or mixed boundary conditions on a surface Σ enclosing the volume V of
interest. The Green’s function G for this problem satisfies

(∇2 + k2)G(r, r′) = δ(r − r′), (11.33)

subject to homogeneous boundary conditions of the same type as ψ satisfies.
Now multiply Eq. (11.32) by G, Eq. (11.33) by ψ, subtract, and integrate over
the appropriate variables:

∫

V

(dr′)
[

G(r, r′)(∇′2 + k2)ψ(r′) − ψ(r′)(∇′2 + k2)G(r, r′)
]

=

∫

V

(dr′) [G(r, r′)S(r′) − ψ(r′)δ(r − r′)] . (11.34)

Here we have interchanged r and r′ in Eqs. (11.32) and (11.33), and have used
the reciprocity relation,

G(r, r′) = G(r′, r). (11.35)

(We have assumed that the eigenfunctions and hence the Green’s function are
real.) Now we use Green’s theorem to establish

−
∫

Σ

dσ ·
[

G(r, r′)∇′ψ(r′) − ψ(r′)∇′G(r, r′)
]

+

∫

V

(dr′)G(r, r′)S(r′) =

{

ψ(r), r ∈ V,
0, r 6∈ V,

(11.36)

where in the surface integral dσ is the outwardly directed surface element, and
r′ lies on the surface Σ. This generalizes the simple relation given in Eq. (11.31).

How do we use this result? We always suppose G satisfies homogeneous
boundary conditions on Σ. If ψ satisfies the same conditions, then for r ∈ V
Eq. (11.31) holds. But suppose ψ satisfies inhomogeneous Dirichlet boundary
conditions on Σ,

ψ(r′)
∣

∣

r′∈Σ
= ψ0(r

′), (11.37)

a specified function on the surface. Then we impose homogeneous Dirichlet
conditions on G,

G(r, r′)
∣

∣

r′∈Σ
= 0. (11.38)

Then the first surface term in Eq. (11.36) is zero, but the second contributes.
For example if S(r) = 0 inside V , we have for r ∈ V

ψ(r) =

∫

Σ

dσ · [∇′G(r, r′)]ψ0(r
′), (11.39)

which express ψ in terms of its boundary values.
If ψ satisfies inhomogeneous Neumann conditions on Σ,

∂ψ

∂n′
(r′)

∣

∣

∣

∣

r′∈Σ

= N(r′), (11.40)
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a specified function, then we use the Green’s function which respects homoge-
neous Neumann conditions,

∂

∂n′
G(r, r′)

∣

∣

∣

∣

r′∈Σ

= 0, (11.41)

so again if S = 0 inside V , we have within V

ψ(r) = −
∫

Σ

dσ G(r, r′)N(r′). (11.42)

Finally, if ψ satisfies inhomogeneous mixed boundary conditions,

[

∂

∂n′
ψ(r′) + α(r′)ψ(r′)

]
∣

∣

∣

∣

r′∈Σ

= F (r′), (11.43)

then when G satisfies homogeneous boundary conditions of the same type

[

∂

∂n′
+ α(r′)

]

G(r, r′)

∣

∣

∣

∣

r′∈Σ

= 0, (11.44)

we have for r ∈ V

ψ(r) =

∫

V

(dr′)G(r, r′)S(r′) −
∫

σ

dσG(r, r′)F (r′). (11.45)

11.4 Helmholtz Equation Inside a Sphere

Here we wish to find the Green’s function for Helmholtz’s equation, which sat-
isfies

(∇2 + k2)Gk(r, r′) = δ(r − r′), (11.46)

in the interior of a spherical region of radius a, with homogeneous Dirichlet
boundary conditions on the surface,

Gk(r, r′)

∣

∣

∣

∣

|r|=a

= 0. (11.47)

We will use two methods.

11.4.1 Eigenfunction Method

We know that the eigenfunctions of the Laplacian are

jl(kr)Y
m

l (θ, φ), (11.48)

in spherical polar coordinates, r, θ, φ; that is,

(∇2 + k2)jl(kr)Y
m
l (θ, φ) = 0. (11.49)
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Here jl is the spherical Bessel function,

jl(x) =

√

π

2x
Jl+1/2(x), (11.50)

and the Y m
l are the spherical harmonics,

Y m
l (θ, φ) =

[

2l + 1

4π

(l −m)!

(l +m)!

]1/2

Pm
l (cos θ)eimφ, (11.51)

where Pm
l is the associated Legrendre function. Here l is a nonnegative integer,

and m is an integer in the range −l ≤ m ≤ l. For example, the first few
spherical Bessel functions (which are simpler than the cylinder functions, the
Bessel functions of integer order) are

j0(x) =
sinx

x
, (11.52a)

j1(x) =
sinx

x2
− cosx

x
, (11.52b)

j2(x) =

(

3

x3
− 1

x

)

sinx− 3

x2
cosx, (11.52c)

and in general

jl(x) = xl

(

− 1

x

d

dx

)l
sinx

x
. (11.53)

The associated Legrendre function is given by

Pm
l (cos θ) = (−1)m sinm θ

(

d

d cos θ

)l+m
(cos2 θ − 1)l

2l l!
. (11.54)

For example, the first few spherical harmonics are

Y 0
0 =

1√
4π
, (11.55a)

Y 1
1 = −

√

3

8π
sin θ eiφ, (11.55b)

Y 0
1 =

√

3

4π
cos θ, (11.55c)

Y 1
1 =

√

3

8π
sin θ e−iφ, (11.55d)

Y 2
2 =

√

15

32π
sin2 θ e2iφ, (11.55e)

Y 1
2 = −

√

15

8π
cos θ sin θ eiφ, (11.55f)

Y 0
2 =

√

5

16π
(3 cos2 θ − 1), (11.55g)
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Y −1
2 =

√

15

8π
cos θ sin θ e−iφ, (11.55h)

Y −2
2 =

√

15

32π
sin2 θ e−2iφ. (11.55i)

The eigenfunctions must vanish ar r = a, so if βln is the nth zero of jl,

jl(βln) = 0, n = 1, 2, 3, . . . , (11.56)

the desired eigenfunctions are

ψnlm(r, θ, φ) = Anljl

(

βln
r

a

)

Y m
l (θ, φ), (11.57)

and the eigenvalues are

λln = −k2
ln = −

(

βln

a

)2

. (11.58)

The normalization constant Anl is determined by the requirement that

∫

r2 dr dΩ |ψnlm(r, θ, φ)|2 = 1, (11.59)

where dΩ = sin θ dθ dφ is the element of solid angle. Since the spherical har-
monics are normalized so that [Ω = (θ, φ) represents a point on the unit sphere]

∫

dΩY m′∗
l′ (Ω)Y m

l (Ω) = δll′δmm′ , (11.60)

the normalization constant is determined by the requirement

|Anl|2
∫ a

0

r2 dr
[

jl

(

βln
r

a

)]2

= 1. (11.61)

Now
∫ a

0

r2 dr jl(βlnr/a)jl(βlmr/a) = δnm
1

2
a3j2l+1(βln), (11.62)

which for n 6= m follows from the orthogonality property (10.68). So

|Anl| =

√

2

a3

1

jl+1(βln)
, (11.63)

and the Green’s function has the eigenfunction expansion

Gk(r, r′) =
∑

nlm

2

a3

1

j2l+1(βln)

Y m
l (Ω)Y m∗

l (Ω′)jl(βlnr/a)jl(βlnr
′/a)

k2 − (βln/a)2
, (11.64)

where Ω = (θ, φ), Ω′ = (θ′, φ′).
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This result can be simplified by carrying out the sum onm, using the addition
theorem for spherical harmonics,

4π

2l + 1

l
∑

m=−l

Y m∗
l (Ω′)Y m

l (Ω) = Pl(cos γ), (11.65)

where Pl(cos γ) = P 0
l (cos γ) is Legendre’s polynomial, and γ is the angle between

the directions represented by Ω and Ω′, or

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (11.66)

Then we obtain

Gk(r, r′) =
2

a3

∑

nl

2l + 1

4π
Pl(cos γ)

1

j2l+1(βln)

jl(βlnr/a)jl(βlnr
′/a)

k2 − (βln/a)2
. (11.67)

This leads us to the second method.

11.4.2 Discontinuity (Direct) Method

Let us adopt the angular dependence found above:

Gk(r, r′) =

∞
∑

l=0

2l+ 1

4π
Pl(cos γ)gl(r, r

′), (11.68)

where we will call gl the reduced Green’s function. Because Y m
l is an eigenfunc-

tion of the angular part of the Laplacian operator,

∇2Y m
l (Ω) = − l(l+ 1)

r2
Y m

l (Ω), (11.69)

and the delta function can be written as

δ(r − r′) =
1

rr′
δ(r − r′)δ(Ω − Ω′), (11.70)

we see that, because of the orthonormality of the spherical harmonics, Eq. (11.60),
the Green’s function equation (11.46) corresponds to the following equation
satisfied by the reduced Green’s function, the inhomogeneous “spherical Bessel
equation,”

[

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+ k2

]

gl(r, r
′) =

1

rr′
δ(r − r′). (11.71)

We solve this equation directly. For (0 < r′ < a)

0 ≤ r < r′ : gl(r, r
′) = a(r′)jl(kr), (11.72a)

r′ < r ≤ a : gl(r, r
′) = b(r′)jl(kr) + c(r′)nl(kr). (11.72b)
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Only jl appears in the first form because the solution must be finite at r = 0,
and the second solution to the spherical Bessel equation,

nl(x) =

√

π

2x
Nl+1/2(x), (11.73)

where Nν is the Neumann function, is singular at x = 0. For example,

n0(x) = −cosx

x
, (11.74)

and in general

nl(x) = −xl

(

− 1

x

d

dx

)l
cosx

x
. (11.75)

To determine the functions a, b, and c, we proceed as follows. The boundary
condition at r = a, gl(a, r

′) = 0, implies

0 = b(r′)jl(ka) + c(r′)nl(ka), (11.76)

or
b(r′)

c(r′)
= −nl(ka)

jl(ka)
. (11.77)

Thus we can write in the outer region,

a ≥ r > r′ : gl(r, r
′) = A(r′)[jl(kr)nl(ka) − nl(kr)jl(ka)]. (11.78)

The next condition we impose is that of the continuity of gl at r = r′:

a(r′)jl(kr
′) = A(r′)[jl(kr

′)nl(ka) − nl(kr
′)jl(ka)]. (11.79)

On the other hand, the derivative of gl is discontinuous at r = r′, as we may
see by integrating Eq. (11.71) over a tiny interval around r = r′:

d

dr
gl(r, r

′)

∣

∣

∣

∣

r=r′+ǫ

r=r′−ǫ

=
1

r′2
, (11.80)

which implies

ka(r′)j′l(kr
′) − kA(r′)[j′l(kr

′)nl(ka) − n′
l(kr

′)jl(ka)] = − 1

r′2
. (11.81)

Now multiply Eq. (11.79) by kj′l(kr
′), and Eq. (11.81) by jl(kr

′), and subtract:

jl(kr
′)

r′2
= −kA(r′)jl(ka)[jl(kr

′)n′
l(kr

′) − nl(kr
′)j′l(kr

′)]. (11.82)

Now jl, nl are the independent solutions of the spherical Bessel equation

[

1

r2
d

dr

(

r2
d

dr

)

− l(l+ 1)

r2
+ k2

]

u = 0, (11.83)
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the Wronskian of which,

∆(r) ≡ jl(kr)n
′
l(kr) − nl(kr)j

′
l(kr) (11.84)

has the form

∆(r) =
const.

r2
, (11.85)

as we saw in Problem 4 of Assignment 8. We can determine the constant by
considering the asymptotic forms of jl, nl,

jl(kr) ∼ sin(kr − lπ/2)

kr
, kr ≫ 1, (11.86a)

nl(kr) ∼ −cos(kr − lπ/2)

kr
, kr ≫ 1, (11.86b)

which imply

∆(r) =
1

k2r2
[sin2(kr − lπ/2) + cos2(kr − lπ/2)]

=
1

(kr)2
. (11.87)

Thus since the right-hand side of Eq. (11.82) is proportional to the Wronskian,
we find the function A:

A(r′) = −k jl(kr
′)

jl(ka)
, (11.88)

and then from Eq. (11.79) we find the function a:

a(r′) = − k

jl(ka)
[jl(kr

′)nl(ka) − nl(kr
′)jl(ka)]. (11.89)

Hence the Green’s function is explicitly

r < r′ : gl(r, r
′) = −k jl(kr)

jl(ka)
[jl(kr

′)nl(ka) − nl(kr
′)jl(ka)], (11.90a)

r > r′ : gl(r, r
′) = −k jl(kr

′)

jl(ka)
[jl(kr)nl(ka) − nl(kr)jl(ka)], (11.90b)

or

gl(r, r
′) = −kjl(kr<)jl(kr>)

[

nl(ka)

jl(ka)
− nl(kr>)

jl(kr>)

]

, (11.91)

where r< is the lesser of r, r′, and r> is the greater.
From this closed form we may extract the eigenvalues and eigenfunctions of

the spherical Bessel differential operator appearing in Eq. (11.83). The poles of
gl occur where jl(ka) has zeroes, all of which are real, at ka = βln, the nth zero
of jl, or

k2 =

(

βln

a

)2

. (11.92)
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In the neighborhood of this zero,

jl(ka) = (ka− βln)j′l(βln). (11.93)

But at the zero the Wronskian is

1

(βln)2
= −nl(βln)j′l(βln). (11.94)

Now from the recursion relation

J ′
λ(z) =

λ

z
Jλ(z) − Jλ+1(z), (11.95)

we see that the derivative of the spherical Bessel function (11.50) satisfies, at
the zero,

j′l(βln) = −jl+1(βln). (11.96)

Thus the residue of the pole of gl at k = βln/a is

1

a2βln

jl(βlnr</a)jl(βlnr>/a)

j2l+1(βln)
. (11.97)

Now jl is an even or odd function of z depending on whether n is even or odd.
So if βln is a zero of jl, so is −βln, and hence if we add the contributions of
these two poles, we get the corresponding contribution to gl:

gl(r, r
′) ∼ 1

a2βln

jl(βlnr/a)jl(βlnr
′/a)

[jl+1(βln)]2

(

1

k − βln/a
− 1

k + βln/a

)

. (11.98)

Summing up the contribution of all such pairs of poles, we obtain

gl(r, r
′) =

2

a3

∞
∑

n=1

jl(βlnr/a)jl(βlnr
′/a)

[jl+1(βln)]2
1

k2 − (βln/a)2
, (11.99)

which is the eigenfunction expansion displayed in Eq. (11.67).

11.5 Helmholtz Equation in Unbounded Space

Again we are solving the equation

(∇2 + k2)Gk(r, r′) = δ(r − r′), (11.100)

but now in unbounded space. The solution to this equation is an outgoing
spherical wave:

Gk(r, r′) = Gk(r − r′) = − 1

4π

eik|r−r
′|

|r − r′| . (11.101)
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This may be directly verified. Consider a small sphere S, of radius ǫ, centered
on r′:

∫

S

(dr)(∇2 + k2)Gk(r − r′) ≈
∫

S

(dρ)∇2
ρ

(

− 1

4π

eikρ

ρ

)

=

∫

dΩ ρ2 d

dρ

(

− 1

4π

eikρ

ρ

)
∣

∣

∣

∣

ρ=ǫ

→ 1, (11.102)

as ǫ → 0. Evidently, for r 6= r′, Gk satisfies the Helmholtz equation, (∇2 +
k2)Gk = 0.

Alternatively, we may constructGk from the eigenfunction expansion (10.109),

Gk(r − r′) =
∑

n

ψ∗
n(r′)ψn(r)

λn − λ
(11.103)

where λ = −k2, λn = −k′2, where the eigenfunctions are solutions of

(∇2 + k′2)ψk′(r) = 0, (11.104)

that is, they are plane waves,

ψk′(r) =
1

(2π)3/2
eik′·r, (11.105)

Here the (2π)−3/2 factor is for normalization:
∫

(dk′)ψk′(r)∗ψk′(r′) = δ(r − r′), (11.106a)

∫

(dr)ψk′(r)∗ψk(r) = δ(k − k′), (11.106b)

where we have noted that the spectrum of eigenvalues is continuous,

∑

n

→
∫

(dk). (11.107)

Thus the eigenfunction expansion for the Green’s function has the form

Gk(r − r′) =

∫

(dk′)

(2π)3
e−ik′·r′eik′·r

k2 − k′2
. (11.108)

Let us evaluate this integral in spherical coordinates, where we write

(dk′) = k′2 dk′ dφ′ dµ′, µ′ = cos θ′, (11.109)

where we have chosen the z axis to lie along the direction of r − r′. The
integration over the angles is easy:

Gk(r − r′) =
1

(2π)3

∫ ∞

0

dk′ k′2
∫ 2π

0

dφ′
∫ 1

−1

dµ′ e
ik′|r−r

′|µ′

k2 − k′2

=
1

(2π)2
1

2

∫ ∞

−∞

dk′ k′2

k2 − k′2
1

ik′ρ

(

eik′ρ − e−ik′ρ
)

, (11.110)
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Figure 11.1: Contour in the k′ plane used to evaluate the integral (11.110).
The integral is closed in the upper (lower) half-plane if the exponent is positive
(negative). The poles in the integrand are avoided by passing above the one on
the left, and below the one on the right.

defining ρ = |r− r′|, where we have replaced
∫ ∞

0
by 1

2

∫ ∞

−∞
because the inte-

grand is even in k′2. We evaluate this integral by contour methods. Because
now k can coincide with an eigenvalue k′, we must choose the contour appropri-
ately to define the Green’s function. Suppose we choose the contour as shown
in Fig. 11.1, passing below the pole at k and above the pole at −k. We close the
contour in the upper half plane for the eikρ and in the lower half plane for the
e−ikρ term. Then by Jordan’s lemma, we immediately evaluate the integral:

Gk(r − r′) =
1

(2π)2
1

2

[

−2πi

2k

k eikρ

iρ
+

2πi

−2k

k eikρ

iρ

]

= − 1

4π

eikρ

ρ
, (11.111)

which coincides with Eq. (11.101). If a different contour defining the integral
had been chosen, we would have obtained a different Green’s function, not
one corresponding to outgoing spherical waves. Boundary conditions uniquely
determine the contour.

Note that

Gk(r, r′) = Gk(r′, r), (11.112)

even though Gk is complex. The self-adjointness property (10.110) implied by
the eigenfunction expansion is only formal, and is spoiled by the contour choice.
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11.6 Green’s Function for the Scalar Wave Equa-

tion

The inhomogeneous scalar wave equation,
(

∇2 − 1

c2
∂2

∂t2

)

ψ(r, t) = ρ(r, t), (11.113)

requires boundary and initial conditions. The boundary conditions may be
Dirichlet, Neumann, or mixed. The initial conditions are Cauchy (see Sec. 11.2).
Thus, we might specify at an initial time t = t0 both ψ(r, t0) and ∂

∂tψ(r, t0) at
every point r in the region being considered.

The corresponding Green’s function G(r, t; r′, t′) satisfies
(

∇2 − 1

c2
∂2

∂t2

)

G(r, t; r′, t′) = δ(r − r′)δ(t− t′). (11.114)

It must satisfy the homogeneous form of the boundary conditions satisfied by
ψ. Thus, if ψ has a specified value everywhere on the bounding surface, the
corresponding Green’s function must vanish on the surface. In classical physics
it is customary to adopt as initial conditions

G(r, t; r′, t′)
∂G
∂t (r, t; r′, t′)

}

= 0 if t < t′. (11.115)

These then define the so-called retarded Green’s functions. They ensure that
an effect occurs after its cause. (In fact, however, this time asymmetry of the
Green’s function, which is not present in the wave equation, is not necessary;
and in fact it is impossible to maintain in relativistic quantum mechanics.)

With such a Green’s function, what takes the place of the self-adjointness
property given in Sec. 10.8? Since the second time derivative is invariant under
t→ −t, we have in addition to the inhomogeneous equation (11.114)

(

∇2 − 1

c2
∂2

∂t2

)

G(r,−t; r′′,−t′′) = δ(r − r′′)δ(t− t′′). (11.116)

Multiply Eq. (11.116) byG(r, t; r′, t), Eq. (11.114) byG(r,−t; r′′,−t′′), subtract,
and integrate over the volume being considered, and over t from −∞ to T , where
T > t′, t′′:

∫ T

−∞

dt

∫

V

(dr)

{

G(r, t; r′, t′)∇2G(r,−t; r′′,−t′′)

−G(r,−t; r′′,−t′′)∇2G(r, t; r′, t′)

−G(r, t; r′, t′)
1

c2
∂2

∂t2
G(r,−t; r′′,−t′′)

+G(r,−t; r′′,−t′′) 1

c2
∂2

∂t2
G(r, t; r′, t′)

}

= −G(r′,−t′; r′′,−t′′) +G(r′′, t′′; r′, t′). (11.117)
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Now use Green’s theorem, together with the corresponding identity,

∂

∂t

(

A
∂

∂t
B −B

∂

∂t
A

)

= A
∂2

∂t2
B −B

∂2

∂t2
A, (11.118)

to conclude that

G(r′′, t′′; r′, t′) −G(r′,−t′; r′′,−t′′)

=

∫ T

−∞

dt

∫

Σ

dσ ·
{

G(r, t; r′, t′)∇G(r,−t; r′′,−t′′)

−G(r,−t; r′′,−t′′)∇G(r, t; r′, t′)

}

−
∫

V

(dr)
1

c2

{

G(r, t; r′, t′)
∂

∂t
G(r,−t; r′′,−t′′)

−G(r,−t; r′′,−t′′) ∂
∂t
G(r, t; r′, t′)

}∣

∣

∣

∣

t=T

t=−∞

. (11.119)

The surface integral vanishes, since both Green’s functions satisfy the same
homogeneous boundary conditions on Σ. (The boundary conditions are time
independent.) The second integral is also zero because from Eq. (11.115)

G(r,−∞; r′, t′)
∂G
∂t (r,−∞; r′, t′)

}

= 0, (11.120a)

since −∞ < t′, and

G(r,−T ; r′′,−t′′)
∂G
∂t (r,−T ; r′′,−t′′)

}

= 0, (11.120b)

since −T < −t′′. Thus the reciprocity relation here is

G(r, t; r′, t′) = G(r′,−t′; r,−t) (11.121)

How do we express a solution to the wave equation (11.113) in terms of the
Green’s function? The procedure is the same as that given earlier. The field,
and the Green’s function, satisfy

∇′2ψ(r′, t) − 1

c2
∂2

∂t′2
ψ(r′, t′) = ρ(r′, t′), (11.122a)

∇′2G(r, t; r′, t′) − 1

c2
∂2

∂t′2
G(r, t; r′, t′) = δ(r − r′)δ(t− t′). (11.122b)

Note that the differentiations on G are with respect to the second set of argu-
ments (this equation follows from the reciprocity relation). Again multiply the
first equation by G(r, t; r′, t′), the second by ψ(r′, t′), subtract, integrate over
the volume, and over t′ from t0 < t to t+, where t+ means t+ ǫ, ǫ→ 0 through
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positive values. Then for r ∈ V ,

∫ t+

t0

dt′
∫

V

(dr′)

{

G(r, t; r′, t′)∇′2ψ(r′, t′) − ψ(r′, t′)∇′2G(r, t; r′, t′)

− 1

c2

[

G(r, t; r′, t′)
∂2

∂t′2
ψ(r′, t′) − ψ(r′, t′)

∂2

∂t′2
G(r, t; r′, t′)

] }

= −ψ(r, t) +

∫ t+

t0

dt′
∫

V

(dr′)G(r, t; r′, t′)ρ(r′, t′). (11.123)

Now we again use Green’s theorem and the identity (11.118) to conclude

ψ(r, t) =

∫ t+

t0

dt′
∫

V

(dr′)G(r, t; r′, t′)ρ(r′, t′)

−
∫ t+

t0

dt′
∮

Σ

dσ ·
[

G(r, t; r′, t′)∇′ψ(r′, t′) − ψ(r′, t′)∇′G(r, t; r′, t′)
]

− 1

c2

∫

V

(dr′)

[

G(r, t; r′, t0)
∂

∂t0
ψ(r′, t0) − ψ(r′, t0)

∂

∂t0
G(r, t; r′, t0)

]

.

(11.124)

This is our result. The interpretation is as follows:

1. The first integral represents the effect of the sources ρ distributed through-
out the volume V .

2. The second integral represents the boundary conditions. If, for example,
ψ satisfies inhomogeneous Neumann boundary conditions on Σ,

n̂ · ∇ψ

∣

∣

∣

∣

Σ

= f(r′) (11.125)

is specified, then we use homogeneous Neumann boundary conditions for
G,

n̂ · ∇G(r, t; r′, t′)

∣

∣

∣

∣

Σ

= 0. (11.126)

Then the second integral reads

−
∫ t+

t0

dt′
∮

Σ

dσ ·G(r, t; r′, t)∇′ψ(r′, t′). (11.127)

That is, −n̂ · ∇
′ψ(r′, t′) represents a surface source distribution. Other

types of boundary conditions are as discussed earlier.

3. The third integral represents the effect of the initial conditions, where

ψ(r′, t0),
∂

∂t0
ψ(r′, t0) (11.128)
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are specified. They correspond to impulsive sources at t = t0:

ρinit(r
′, t′) = − 1

c2

[

∂

∂t0
ψ(r′, t0)δ(t

′ − t0) + ψ(r′, t0)δ
′(t′ − t0)

]

. (11.129)

We verify this statement by integrating by parts, and letting the lower
limit of the t′ integration be t0 − ǫ.

11.7 Wave Equation in Unbounded Space

We now wish to solve Eq. (11.114)

(

∇2 − 1

c2
∂2

∂t2

)

G(r, t; r′, t′) = δ(r − r′)δ(t− t′), (11.130)

in unbounded space by noting that then G is a function of R = r − r′ and
T = t− t′ only,

G(r, t; r′, t′) = G(r − r′, t− t′) = G(R, T ). (11.131)

Then we can introduce a Fourier transform in space and time,

g(k, ω) =

∫

(dR) dTeik·Re−iωTG(R, T ). (11.132)

The Fourier transform of the Green’s function equation is (we have set c = 1
temporarily for convenience),

(−k2 + ω2)g(k, ω) = 1, (11.133)

where we write k2 = k · k, which has the immediate solution

g(k, ω) =
1

ω2 − k2
. (11.134)

Thus the Green’s function has the formal representation

G(R, T ) =

∫

(dk)

(2π)3
dω

2π
e−ik·ReiωT 1

ω2 − k2
. (11.135)

The ω integral here is not well defined until we impose the boundary condition
(11.115)

G(R, T ) = 0 if T < 0. (11.136)

This will be true if the poles are located above the real axis, as shown in Fig. 11.2.
Here the contour is closed in the upper half plane if T > 0, and in the lower half
plane if T < 0. In both cases, by Jordan’s lemma, the infinite semicircle gives
no contribution. We have

∫ ∞

−∞

dω

2π
eiωT 1

(ω − k)(ω + k)
=

{

i
(

eikT

2k − e−ikT

2k

)

, T > 0,

0 T < 0.
(11.137)
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Figure 11.2: Contour in the ω plane used to evaluate the integral (11.135).

Thus, if T > 0,

G(R, T ) =
1

(2π)3

∫ ∞

0

k2 dk 2π

∫ 1

−1

dµ e−ikRµ i

2k

(

eikT − e−ikT
)

=
i

(2π)2

∫ ∞

0

k dk

2ikR

(

eikR − e−ikR
) (

eikT − e−ikT
)

=
1

(2π)2
1

2R

1

2

∫ ∞

−∞

dk
(

eik(R+T ) + e−ik(R+T ) − eik(R−T ) − eik(T−R)
)

=
1

2π

1

2R
[δ(R+ T ) − δ(R − T )] . (11.138)

But R and T are both positive, so R + T can never vanish. Thus we are left
with

G(R, T ) = − 1

4π

1

R
δ(R − T ), (11.139)

or restoring c,

G(r − r′, t− t′) = − 1

4π

1

|r − r′|δ
( |r − r′|

c
− (t− t′)

)

. (11.140)

The effect at the observation point r at time t is due to the action at the source
point r′ at time

t′ = t− |r − r′|
c

. (11.141)

Physically, this means that the “signal” propagates with speed c.
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Let us make this more concrete by considering a simple example, a point
“charge” moving with velocity v(t) = d

dtr(t),

ρ(r, t) = qδ(r − r(t)). (11.142)

There are no effects from the infinite surface, nor from the infinite past, so we
have from Eq. (11.124)

ψ(r, t) =

∫ t+

−∞

dt′
∫

V

(dr′)G(r − r′, t− t′)ρ(r′, t′)

= − q

4π

∫ t+

−∞

dt′
1

|r− r(t′)|δ
( |r− r(t′)|

c
− (t− t′)

)

. (11.143)

If we let R(t′) = r− r(t′), the distance from the source to the observation point

at time t′ = t− R(t′)
c , we write this as

ψ(r, t) = − q

4π

∫ t+

−∞

dt′
1

R(t′)
δ

(

R(t′)

c
− (t− t′)

)

. (11.144)

Let τ = R(t′)/c+ t′, where τ = t determines the “retarded time” t′ so

dτ = dt′
(

1 +
1

c

dR

dt′

)

, (11.145)

where
dR

dt′
=

1

2R

d

dt′
R ·R = −R · v

R
, (11.146)

that is

dτ = dt′
(

1 − R · v
Rc

)

. (11.147)

Thus the field is evaluated as

ψ(r, t) = − q

4π

∫ t+R(t)/c

−∞

dτ

R(τ)

1
(

1 − R·v
Rc

)

(τ)
δ(τ − t)

= − q

4π

1

R(t) − R(t) · v(t)/c
. (11.148)


