
Chapter 10

Linear Operators,

Eigenvalues, and Green’s

Operator

We begin with a reminder of facts which should be known from previous courses.

10.1 Inner Product Space

A vector space V is a collection of objects {x} for which addition is defined.
That is, if x, y ∈ V , x+ y ∈ V , which addition satisfies the usual commutative
and associative properties of addition:

x+ y = y + x, x+ (y + z) = (x + y) + z. (10.1)

There is a zero vector 0, with the property

0 + x = x+ 0 = x, (10.2)

and the inverse of x, denoted −x, has the property

x− x ≡ x+ (−x) = 0. (10.3)

Vectors may be multiplied by complex numbers (“scalars”) in the usual way.
That is, if λ is a complex number, and x ∈ V , then λx ∈ V . Multiplication by
scalars is distributive over addition:

λ(x + y) = λx+ λy. (10.4)

Scalar multiplication is also associative: If λ and µ are two complex numbers,

λ(µx) = (λµ)x. (10.5)

107 Version of November 16, 2011



108 Version of November 16, 2011 CHAPTER 10. LINEAR OPERATORS

An inner product space is a vector space possessing an inner product. If x
and y are two vectors, the inner product

〈x, y〉 (10.6)

is a complex number. The inner product has the following properties:

〈x, y + αz〉 = 〈x, y〉 + α〈x, z〉, (10.7a)

〈x + βy, z〉 = 〈x, z〉 + β∗〈y, z〉, (10.7b)

〈x, y〉 = 〈y, x〉∗, (10.7c)

〈x, x〉 > 0 if x 6= 0, (10.7d)

where α and β are scalars. Because of the properties (10.7a) and (10.7b), we
say that the inner product is linear in the second factor and antilinear in the
first. Because of the last property (10.7d), we define the norm of the vector by

‖x‖ =
√

〈x, x〉. (10.8)

10.2 The Cauchy-Schwarz Inequality

An important result is the Cauchy-Schwarz inequality,1 which has an obvious
meaning for, say, three-dimensional vectors. It reads, for any two vectors x and
y

|〈x, y〉| ≤ ‖x‖‖y‖, (10.9)

where equality holds if and only if x and y are linearly dependent.
Proof: For arbitrary λ we have

0 ≤ 〈x− λy, x− λy〉 = ‖x‖2 − λ〈x, y〉 − λ∗〈y, x〉 + |λ|2‖y‖2. (10.10)

Because the inequality is trivial if y = 0, we may assume y 6= 0, and so we may
choose

λ =
〈y, x〉
‖y‖2

. (10.11)

The the inequality (10.10) read

0 ≤ ‖x‖2 − 2

‖y‖2
|〈x, y〉|2 +

|〈y, x〉|2
‖y‖2

= ‖x‖2 − |〈x, y〉|2
‖y‖2

, (10.12)

from which Eq. (10.9) follows. Evidently inequality holds in Eq. (10.10) unless

x = λy. (10.13)

1The name Bunyakovskii should also be added.
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From the Cauchy-Schwarz inequality, the triangle inequality follows:

‖x+ y‖ ≤ ‖x‖ + ‖y‖. (10.14)

Proof:

‖x+ y‖2 = 〈x+ y, x+ y〉
= ‖x‖2 + ‖y‖2 + 2Re 〈x, y〉
≤ ‖x‖2 + ‖y‖2 + 2|〈x, y〉|
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖ + ‖y‖)2. (10.15)

QED

10.3 Hilbert Space

A Hilbert space H is an inner product space that is complete. Recall from
Chapter 2 that a complete space is one in which any Cauchy sequence of vectors
has a limit in the space. That is, if we have a Cauchy sequence of vectors, i.e.,
for any ǫ > 0,

{xn}∞n=1
: ‖xn − xm‖ < ǫ ∀ n,m > N(ǫ), (10.16)

then the sequence has a limit in H, that is, there is an x ∈ H for which for any
ǫ > 0 there is an N(ǫ) so large that

‖x− xn‖ < ǫ ∀ n > N(ǫ). (10.17)

We will mostly be talking about Hilbert spaces in the following.

Suppose we have a countable set of orthonormal vectors {ei}, i = 1, 2, . . .,
in H. Orthonormality means

〈ei, ej〉 = δij . (10.18)

The set is said to be complete if any vector x in H can be expanded in terms of
the eis:

2

x =

∞
∑

i=1

〈ei, x〉ei. (10.19)

Here convergence is defined in the sense of the norm as described above. Geo-
metrically, the inner product 〈ei, x〉 is a kind of direction cosine of the vector x,
or a projection of the vector x on the basis vector ei.

2If the space is finite dimensional, then the sum runs up to the dimensionality of the space.



110 Version of November 16, 2011 CHAPTER 10. LINEAR OPERATORS

Example

Consider the space of all functions that are square integrable on the closed
interval [−π, π]:

∫ π

−π

|f(x)|2 dx <∞. (10.20)

The functions (not the values of the functions) are the vectors in the space, and
the inner product is defined by

〈f, g〉 =

∫ π

−π

f(x)∗g(x) dx. (10.21)

It is evident that this definition of the inner product satisfies all the properties
(10.7a)–(10.7d). This space, called L2(−π, π), is in fact a Hilbert space. A
complete set of orthonormal vectors is

{fn} : fn(x) =
1√
2π
einx, n = 0,±1,±2, . . . . (10.22)

whose inner products satisfy

〈fn, fm〉 = δn,m. (10.23)

The expansion

f =

∞
∑

n=−∞

〈fn, f〉fn (10.24)

is the Fourier expansion of f :

〈fn, f〉 =
1√
2π

∫ ∞

−∞

f(x)e−inx dx = an, (10.25)

where in terms of the Fourier coefficient an

f(x) =
∞
∑

n=−∞

an

1√
2π
einx. (10.26)

This Fourier series does not, in general, converge pointwise, but it does converge
“in the mean:”

∥

∥

∥

∥

∥

f(x) − 1√
2π

N
∑

n=−N

ane
inx

∥

∥

∥

∥

∥

→ 0 as N → 0, (10.27)

that is,

lim
N→∞

∫ π

−π

dx

∣

∣

∣

∣

∣

f(x) − 1√
2π

N
∑

n=−N

an e
inx

∣

∣

∣

∣

∣

2

= 0. (10.28)
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10.4 Linear Operators

A linear operator T on a vector space V is a rule assigning to each f ∈ V a
unique vector Tf ∈ V . It has the linearity property,

T (αf + βg) = αTf + βTg, (10.29)

where α, β are scalars. In an inner product space, the adjoint (or Hermitian

conjugate) of T is defined by

〈f, T g〉 = 〈T †f, g〉, ∀ f, g ∈ V. (10.30)

T is self-adjoint (or Hermitian) if

T † = T. (10.31)

10.4.1 Sturm-Liouville Problem

Consider the space of twice continuously differentiable real functions defined on
a segment of the real line

x0 ≤ x ≤ x1, (10.32)

an incomplete subset of the Hilbert space L2(x0, x1). Under what conditions is
the differential operator

L = p(x)
d2

dx2
+ q(x)

d

dx
+ r(x), (10.33)

where p, q, and r are real functions, self-adjoint?
Let u, v be functions in the space. In terms of the L2 inner product

〈u, Lv〉 =

∫ x1

x0

dxu(x)Lv(x)

=

∫ x1

x0

dxu(x)

[

p(x)
d2

dx2
v(x) + q(x)

d

dx
v(x) + r(x)v(x)

]

= u(x)p(x)v′(x)

∣

∣

∣

∣

x1

x0

−
∫ x1

x0

dx [u(x)p(x)]
′
v′(x)

+ u(x)q(x)v(x)

∣

∣

∣

∣

x1

x0

−
∫ x1

x0

dx [u(x)q(x)]
′
v(x)

+

∫ x1

x0

dxu(x)r(x)v(x)

=
{

u(x)p(x)v′(x) + u(x)q(x)v(x) − [u(x)p(x)]
′
v(x)

}

∣

∣

∣

∣

x1

x0

+

∫ x1

x0

dx
{

[u(x)p(x)]
′′
v(x) − [u(x)q(x)]

′
v(x) + u(x)r(x)v(x)

}
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= {p(x) [u(x)v′(x) − u′(x)v(x)] + [q(x) − p′(x)] u(x)v(x)}
∣

∣

∣

∣

x1

x0

+

∫ x1

x0

dx
{

p(x)u′′(x) + [2p′(x) − q(x)] u′(x)

+ [p′′(x) − q′(x) + r(x)] u(x)
}

v(x). (10.34)

The last integral here equals, for all v, v,

〈Lu, v〉 =

∫ x1

x0

dx [Lu(x)] v(x) (10.35)

if and only if
2p′ − q = q, p′′ − q′ + r = r, (10.36)

which imply the single condition

p′(x) = q(x). (10.37)

If this condition holds for all x in the interval [x0, x1], the integrated term is

p(x) [u(x)v′(x) − u′(x)v(x)]

∣

∣

∣

∣

x1

x0

. (10.38)

Only if this is zero is L Hermitian:

〈u, Lv〉 = 〈Lu, v〉. (10.39)

The vanishing of the integrated term may be achieved in various ways:

1. The function p may vanish at both boundaries:

p(x0) = p(x1) = 0, and u, v bounded for x = x0, x1. (10.40)

Thus, for example, the Legendre differential operator

(1 − x2)
d2

dx2
− 2x

d

dx
(10.41)

is self-adjoint on the interval [−1, 1].

2. The functions in the space satisfy homogeneous boundary conditions:

(a) The functions vanish at the boundaries,

u(x0) = u(x1) = 0, v(x0) = v(x1) = 0. (10.42)

These are called homogeneous Dirichlet boundary conditions.

(b) The derivatives of the functions vanish at the boundaries,

u′(x0) = u′(x1) = 0, v′(x0) = v′(x1) = 0. (10.43)

These are called homogeneous Neumann boundary conditions.
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(c) Homogeneous mixed boundary conditions are a linear combination
of these conditions,

u′(x0) + α(x0)u(x0) = 0, (10.44a)

u′(x1) + α(x1)u(x1) = 0, (10.44b)

where α is some function, the same for all functions u in the space.

3. A third possibility is that the solutions may satisfy periodic boundary
conditions,

u(x0) = u(x1) and u′(x0) = u′(x1). (10.45)

This only works when the function p is also periodic,

p(x0) = p(x1). (10.46)

Conditions such as the above, which insure the vanishing of the integrated
term (or, in higher dimensions, surface terms) are called self-adjoint boundary

conditions. When they hold true, the differential equation

d

dx

[

p(x)
d

dx
u(x)

]

+ r(x)u(x) = 0 (10.47)

is self-adjoint. This equation is called the Sturm-Liouville equation.

10.5 Eigenvectors

If T is a (linear) operator and f 6= 0 is a vector such that

Tf = λf, (10.48)

where λ is a complex number, then we say that f is a eigenvector (“characteristic
vector”) belonging to the operator T , and λ is the corresponding eigenvalue.

The following theorem is most important. The eigenvalues of a Hermitian

operator are real, and the eigenvectors belonging to distinct eigenvalues are or-

thogonal. The proof is quite simple. If

Tf = λf, T g = µg, (10.49)

then
〈g, T f〉 = λ〈g, f〉 = 〈Tg, f〉 = µ∗〈g, f〉. (10.50)

Thus if g and f are the same, we conclude that

λ = λ∗, (10.51)

i.e., the eigenvalue λ is real, while then if λ 6= µ, we must have

〈g, f〉 = 0. (10.52)
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10.5.1 Bessel Functions

The Bessel operator is

Bν =
d2

dx2
+

1

x

d

dx
− ν2

x2
. (10.53)

where ν is a real number. This is Hermitian in the space of real functions
satisfying homogeneous boundary conditions (Dirichlet, Neumann, or mixed),
where the inner product is defined by

〈u, v〉 =

∫ b

a

xdxu(x)v(x). (10.54)

Proof: Note that

xBν =
d

dx
x
d

dx
− ν2

x
(10.55)

is of the Sturm-Liouville form, (10.47), with p(x) = x, which is Hermitian with
the L2(a, b) inner product. Then

〈u,Bνv〉 =

∫ b

a

dxu(x)xBνv(x) =

∫ b

a

dxxBνu(x)v(x) = 〈Bνu, v〉. (10.56)

When a = 0, the lower limit of the integrated term is zero automatically if
the functions are finite at x = 0—See Eq. (10.38). Suppose we demand that
Dirichlet conditions hold at x = b, i.e., that the functions must vanish there.
Then we seek solutions to the following Hermitian eigenvalue problem,

Bνψνn = λνnψνn, (10.57)

with the boundary conditions

ψνn(b) = 0, ψνn(0) = finite. (10.58)

Here n enumerates the eigenvalues. The solutions to this problem are the Bessel

functions, which satisfy the differential equation

(

d2

dz2
+

1

z

d

dz
+ 1 − ν2

z2

)

Jν(z), (10.59)

which are finite at the origin, z = 0.3 This is the same as the eigenvalue equation
(10.57) provided we change the variable z =

√
−λνnx. That is,

ψνn(x) = Jν(
√

−λνnx). (10.60)

The solutions we seek are Bessel functions of a real variable, so the acceptable
eigenvalues satisfy

λνn < 0, (10.61)

3The second solution to Eq. (10.59), the so-called Neumann function Nν(z) [it is also
denoted by Yν(z) and is more properly attributed to Weber], is not regular at the origin.
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so we write
−λνn = k2

νn. (10.62)

Finally, we impose the boundary condition at x = b:

0 = ψνn(b) = Jν(kνnb), (10.63)

that is, kνnb must be a zero of Jν . There are an infinite number of such zeros, as
Fig. 10.1 illustrates. Let the nth zero of Jν be denoted by ανn, n = 1, 2, 3, . . ..
For example, the first three zeros of J0 are

α01 = 2.404826, α02 = 5.520078, α03 = 8.653728, (10.64)

while the first three zeros of J1 (other than 0) are

α11 = 3.83171, α12 = 7.01559, α13 = 10.17347. (10.65)

Then the eigenvalues of the Bessel operator are

λνn = −
(ανn

b

)2

, (10.66)

and the eigenfunctions are

Jν

(

ανn

x

b

)

. (10.67)

Because of the Hermiticity of Bν , these have the following orthogonality prop-
erty, from Eq. (10.52),

∫ b

0

dxxJν

(

ανn

x

b

)

Jν

(

ανm

x

b

)

= 0, n 6= m. (10.68)

10.6 Dual Vectors. Dirac Notation

It is often convenient to think of the inner product as being composed by the
multiplication to two different kinds of vectors. Thus, in 2-dimensional vector
space we have column vectors,

v =

(

v1
v2

)

, (10.69)

and row vectors,
v† = (v∗

1
, v∗

2
). (10.70)

As the notation indicates, the row vector v† is the adjoint, the complex conjugate
of the transpose of the column vector v. The inner product is then formed by
the rules of matrix multiplication,

〈v,u〉 = v†u = v∗
1
u1 + v∗

2
u2. (10.71)

We generalize this notion to abstract vectors as follows. Denote a “right”
vector (Dirac called it a “ket”) by |λ〉 where λ is a name, or number, or set
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Figure 10.1: Plot of the Bessel functions of the first kind, J0, J1, and J2, as
functions of x.
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of numbers, labeling the vector. For example, if |λ〉 is an eigenvector of some
operator, λ might be the corresponding eigenvalue.

The dual (or “conjugate”) vector to |λ〉 is

〈λ| = (|λ〉)†, (10.72)

which is a “left” vector or a “bra” vector. For every right vector there is a unique
left vector, and vice versa, in an inner product space. The inner product of |α〉
with 〈β| is denoted 〈β|α〉. Note that the double vertical line has coalesced into
a single line. This notation is a bracket notation, hence Dirac’s nomenclature.

With row and column vectors there is not only an inner product, but an
outer product as well:

vu† =

(

v1
v2

)

(u∗
1
, u∗

2
) =

(

v1u
∗
1
v1u

∗
2

v2u
∗
1
v2u

∗
2

)

. (10.73)

The result is a matrix or operator. So it is with abstract left and right vectors.
We may define a dyadic by

|α〉〈β| (10.74)

which is an operator. When it acts on the right vector |γ〉 it produces another
vector,

|α〉〈β||γ〉 = |α〉〈β|γ〉, (10.75)

where 〈β|γ〉 is a complex number, the inner product of 〈β| and |γ〉; evidently
the properties of an operator are satisfied.

10.6.1 Basis Vectors

Let |n〉, n = 1, 2, . . . be a complete, orthonormal set of vectors, that is, they
satisfy the properties

〈m|n〉 = δmn, (10.76a)

and if |λ〉 is any vector in the space,

|λ〉 =

∞
∑

n=1

|n〉〈n|λ〉. (10.76b)

This is just a rewriting of the statement in Eq. (10.19). Since |λ〉 is an arbitrary
vector, we must have

∞
∑

n=1

|n〉〈n| = I, (10.77)

where I is the identity operator. This operator expression is the completeness

relation for the vectors {|n〉}.
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10.7 L2(V )

As we have seen, an important example of a Hilbert space is the space of all
functions square-integrable in some region. For example, suppose we consider
complex-valued functions f(r), where r = (x, y, z), r ∈ V , where V is some
volume in 3-dimensional space, such that

∫

V

(dr)|f(r)|2 <∞, (10.78)

where the volume element (dr) = dx dy dz. We call this Hilbert space L2(V ).
Vectors in this space are functions: The function f corresponds to |f〉, which
we write as

f(r) −→ |f〉. (10.79)

The inner product is

〈f |g〉 =

∫

V

(dr)f∗(r)g(r). (10.80)

It is most convenient to define the “function” δ(r − r0), the Dirac delta
function, by the property

f(r0) =

∫

V

(dr) δ(r − r0)f(r) (10.81)

for all f provided r0 lies within V . Regarding δ as a function (it is actually a
linear functional defined by the integral equation above), we denote the corre-
sponding vector in Hilbert space by |r0〉:

δ(r − r0) −→ |r0〉. (10.82)

(Actually, |r0〉 is not a vector in L2(V ), because it is not a square-integrable
function.) Pictorially, |r0〉 represents a function which is localized at r = r0,
i.e., it vanishes if r 6= r

0
, but with the property

〈r0|f〉 =

∫

V

(dr)δ(r − r0)f(r) = f(r0); (10.83)

the number 〈r0|f〉 is the value of f at r0. Also note that

〈r0|r1〉 =

∫

V

(dr)δ(r − r0)δ(r − r1) = δ(r0 − r1). (10.84)

In the above, we always assume that r0 and r1 lie in the volume V .
It may be useful to recognize that in quantum mechanics |r0〉 is an eigen-

vector of the position operator. It represents a state in which the particle has a
definite position, namely r0.

Now notice that if the completeness relation (10.77) is multiplied on the
right by |r′〉 and on the left by 〈r|, it reads

∞
∑

n=1

〈r|n〉〈n|r′〉 = δ(r − r′). (10.85)
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If we define ψn(r) = 〈r|n〉 as the values of what is now a complete set of
functions,

∞
∑

n=1

ψ∗
n(r′)ψn(r) = δ(r − r′). (10.86)

Implicit in what we are saying here is the assumption that the set of vectors
|r〉, r ∈ V , is complete:

〈g|f〉 =

∫

V

(dr)g∗(r)f(r)

=

∫

V

(dr)〈g|r〉〈r|f〉, (10.87)

which must mean, since |g〉 and 〈f | are arbitrary,

I =

∫

V

(dr)|r〉〈r|. (10.88)

(Because the vectors are continuously, not discretely, labeled, the sum in Eq.
(10.77) is replaced by an integral.) This will not be true if there are other
variables in the problem, such as spin, but in that case the inner product is not
given in terms of an integral over r alone.

10.8 Green’s Operator

We have now reached the taking-off point for the discussion of Green’s functions.
We will in this section sketch the general type of problem we wish to consider.
In the next chapter we will fill in the details, by considering physical examples.

Let L be a self-adjoint linear operator in a Hilbert space. We wish to find
the solutions |ψ〉 to the following vector equation

(L− λ)|ψ〉 = |S〉, (10.89)

where |S〉 is a prescribed vector, the “source,” and λ is a real number not equal
to any of the (real) eigenvectors of L.

Suppose the eigenvectors of L, which satisfy

L|n〉 = λn|n〉, (10.90)

are complete, and are orthonormalized,

∑

n

|n〉〈n| = I. (10.91)

We may then expand |ψ〉 in terms of these,

|ψ〉 =
∑

n

|n〉〈n|ψ〉. (10.92)
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When we insert this expansion into Eq. (10.89) and use the eigenvalue equation
(10.90), we obtain

∑

n

(λn − λ)|n〉〈n|ψ〉 = |S〉. (10.93)

Now multiply this equation on the left by 〈n′|, and use the orthonormality
property

〈n′|n〉 = δn′n, (10.94)

to find (n′ → n)

(λn − λ)〈n|ψ〉 = 〈n|S〉, (10.95)

or, provided λ 6= λn,

〈n|ψ〉 =
〈n|S〉
λn − λ

. (10.96)

Then from Eq. (10.92) we deduce

|ψ〉 =
∑

n

|n〉〈n|
λn − λ

|S〉, (10.97)

which means we have solved for |ψ〉 in terms of the presumably known eigen-
vectors and eigenvalues of L. We write this more compactly as

|ψ〉 = G|S〉, (10.98)

where G, the Green’s operator, is

G =
∑

n

|n〉〈n|
λn − λ

; (10.99)

the sum ranges over all the eigenvectors of L.
We regard Eq. (10.98) as the definition of G: the response of a linear system

is linear in the source. Eq. (10.99) is the eigenvector expansion of G.
Two properties of G follow immediately from the above:

1. From Eq. (10.99), since both λ and λn are real, we see that G is Hermitian,

G† = G. (10.100)

2. From either of Eqs. (10.98) or (10.99) we see that G satisfies the operator
equation

(L − λ)G = I. (10.101)

The case of functions is the most important one. Then if we use Eq. (10.88),
the inhomogeneous equation (10.89) becomes

〈r|(L − λ)

∫

V

(dr′)|r′〉〈r′|ψ〉 = 〈r|S〉. (10.102)
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Suppose
〈r|L|r′〉 = L̂δ(r − r′), (10.103)

where L̂ is a differential operator (the usual case), and let us further write

〈r′|ψ〉 = ψ(r′), 〈r|S〉 = S(r). (10.104)

Then the inhomogeneous equation (10.102) reads

(L̂− λ)ψ(r) = S(r) (10.105)

The solution to Eq. (10.105) is given by 〈r| times Eq. (10.98):

〈r|ψ〉 = 〈r|G
∫

V

(dr′)|r′〉〈r′|S〉, (10.106)

or

ψ(r) =

∫

V

(dr′)G(r, r′)S(r′), (10.107)

where we have written the Green’s function as

G(r, r′) = 〈r|G|r′〉. (10.108)

The eigenfunction expansion of G(r, r′) is

G(r, r′) =
∑

n

ψ∗(r′)ψ(r)

λn − λ
, (10.109)

where the eigenfunctions, satisfying Eq. (10.86), are ψn(r) = 〈r|n〉. Now the
properties of G(r, r′) are

1. The reciprocity relation:

G(r, r′) = G∗(r′, r), (10.110)

which follows immediately from the eigenfumction expansion (10.109) or
from Eq. (10.100):

〈r|G†|r′〉 = 〈r′|G|r〉∗ = 〈r|G|r′〉. (10.111)

2. The differential equation satisfied by the Green’s function is

(L̂− λ)G(r, r′) = δ(r − r′), (10.112)

which follows from Eqs. (10.107), (10.109), or (10.101).

3. Now we have an additional property. If ψn(r) satisfy homogeneous bound-
ary conditions, for example, ψn(r) = 0 on the surface of V , G(r, r′) satis-
fies the same conditions, for example it vanishes when r or r′ lies on the
surface of V .
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Note that the eigenfunction expansion of G(r, r′),

Gλ(r, r′) =
∑

n

ψ∗
n(r′)ψn(r)

λn − λ
, (10.113)

where now the parameter λ has been made explicit in G, says that Gλ has
simple poles at each of the eigenvalues λn, and that the residue of the pole of
Gλ at λ = λn is

ResGλ(r, r′)
∣

∣

λ=λn

= −ψ∗
n(r′)ψ(r). (10.114)

If the eigenvalue is degenerate, that is, there is more than one eigenfunction
corresponding to a given eigenvalue, one obtains a sum over all the ψ∗

nψn cor-
responding to λn.

Thus, if G may be determined by other means than by an eigenfunction
expansion, such as directly solving the differential equation (10.112), from it
the eigenvalues and normalized eigenfunctions of L̂ may be determined. We will
illustrate this eigenfunction decomposition in the next chapter.


