Chapter 1

Review of Complex Numbers

Complex numbers are defined in terms of the imaginary unit, i, having the property

$$
\begin{equation*}
i^{2}=-1 \tag{1.1}
\end{equation*}
$$

A general complex number has the form

$$
\begin{equation*}
z=x+i y \tag{1.2}
\end{equation*}
$$

where x, y are real numbers. We also often write

$$
\begin{equation*}
z=\operatorname{Re} z+i \operatorname{Im} z \tag{1.3}
\end{equation*}
$$

where $\operatorname{Re} z$ is the "real part of z," and $\operatorname{Im} z$ is the "imaginary part of z." Complex numbers are added and multiplied just like real numbers: If

$$
\begin{align*}
& z_{1}=x_{1}+i y_{1} \tag{1.4a}\\
& z_{2}=x_{2}+i y_{2} \tag{1.4b}
\end{align*}
$$

then

$$
\begin{align*}
z_{1}+z_{2} & =\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right), \tag{1.5a}\\
z_{1} z_{2} & =x_{1} x_{2}+i y_{1} x_{2}+i x_{1} y_{2}+i^{2} y_{1} y_{2} \\
& =x_{1} x_{2}-y_{1} y_{2}+i\left(x_{1} y_{2}+x_{2} y_{1}\right) . \tag{1.5b}
\end{align*}
$$

The complex conjugate of a number is obtained by reversing the sign of i : If $z=x+i y$, we define the complex conjugate of z by

$$
\begin{equation*}
z^{*}=x-i y \tag{1.6}
\end{equation*}
$$

1 Version of August 20, 2016

Figure 1.1: Geometrical interpretation of a complex number $z=x+i y$.
(Sometimes the notation \bar{z} is used for the complex conjugate of z.) Note that

$$
\begin{align*}
& \operatorname{Re} z=\frac{z+z^{*}}{2} \tag{1.7a}\\
& \operatorname{Im} z=\frac{z-z^{*}}{2 i} \tag{1.7b}
\end{align*}
$$

Note also that

$$
\begin{equation*}
z z^{*}=x^{2}+y^{2} \tag{1.8}
\end{equation*}
$$

is purely real and non-negative, so we define the modulus, or magnitude, or absolute value of z by

$$
\begin{equation*}
|z|=\sqrt{z z^{*}}=\sqrt{(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}} \tag{1.9}
\end{equation*}
$$

where the positive square root is implied.
We give a simple geometrical interpretation to complex numbers, by thinking of them as two-dimensional vectors, as sketched in Fig. 1.1. Here the length of the vector is the magnitude of the complex number,

$$
\begin{equation*}
r=|z| \tag{1.10}
\end{equation*}
$$

and the angle the vector makes with the real axis is θ, where

$$
\begin{equation*}
\tan \theta=y / x \tag{1.11}
\end{equation*}
$$

the quadrant θ lies in is determined by the sign of x and y. We call

$$
\begin{equation*}
\theta=\arg z \tag{1.12}
\end{equation*}
$$

the argument or phase of z. The above geometrical picture is sometimes called an Argand diagram.

> z-plane

Figure 1.2: Geometrical interpretation of complex conjugation.

There is an arbitrariness in the choice of the argument θ of a complex number z, for one can always add an arbitrary multiple of 2π to θ without changing z,

$$
\begin{equation*}
\theta \rightarrow \theta+2 \pi n, \quad n \text { an integer, } \quad z \rightarrow z \tag{1.13}
\end{equation*}
$$

It is often convenient to define a single-valued argument function $\arg z$. By convention, the principal value of $\arg z$ is that phase angle which satisfies the inequality

$$
\begin{equation*}
-\pi<\arg z \leq \pi \tag{1.14}
\end{equation*}
$$

(Note that radian measure is always employed.) For every z there is a unique $\arg z$ lying in this range.

The geometrical significance of complex conjugation is shown in Fig. 1.2. Complex conjugation corresponds to reflection in the x-axis.

From the Argand diagram we can write down the "polar representation" of a complex number,

$$
\begin{align*}
z & =r \cos \theta+i r \sin \theta \\
& =r(\cos \theta+i \sin \theta) \tag{1.15}
\end{align*}
$$

so if we have two complex numbers,

$$
\begin{align*}
& z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \tag{1.16a}\\
& z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \tag{1.16b}
\end{align*}
$$

the product is

$$
\begin{align*}
z_{1} z_{2}= & r_{1} r_{2}\left\{\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right. \\
& \left.+i\left[\cos \theta_{1} \sin \theta_{2}+\cos \theta_{2} \sin \theta_{1}\right]\right\} \\
= & r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \tag{1.17}
\end{align*}
$$

That is, the moduli of the complex numbers multiply,

$$
\begin{equation*}
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \tag{1.18a}
\end{equation*}
$$

while the arguments add,

$$
\begin{equation*}
\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2} \tag{1.18b}
\end{equation*}
$$

The latter statement is to be understood as modulo 2π, i.e., equality up to the addition of an arbitrary integer multiple of 2π. In particular, note that

$$
\begin{equation*}
\left|\frac{1}{z} z\right|=\left|\frac{1}{z}\right||z|=1 \tag{1.19a}
\end{equation*}
$$

while

$$
\begin{equation*}
0=\arg \left(\frac{1}{z} z\right)=\arg \frac{1}{z}+\arg z \tag{1.19b}
\end{equation*}
$$

implying that

$$
\begin{align*}
\left|\frac{1}{z}\right| & =\frac{1}{|z|} \tag{1.20a}\\
\arg \frac{1}{z} & =-\arg z \tag{1.20b}
\end{align*}
$$

1.1 De Moivre's Theorem

From the above, if we choose a unit vector,

$$
\begin{equation*}
z=\cos \theta+i \sin \theta \tag{1.21}
\end{equation*}
$$

successive powers follow a simple pattern:

$$
\begin{align*}
z^{2}= & \cos 2 \theta+i \sin 2 \theta \tag{1.22a}\\
z^{3}= & \cos 3 \theta+i \sin 3 \theta \tag{1.22b}\\
& \ldots \tag{1.22c}\\
z^{n}= & \cos n \theta+i \sin n \theta
\end{align*}
$$

or

$$
\begin{equation*}
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta \tag{1.23}
\end{equation*}
$$

where n is a positive integer. This is called De Moivre's theorem.

1.2 Roots

Suppose we wish to find all the nth roots of unity, that is, all solutions to the equation

$$
\begin{equation*}
z^{n}=1 \tag{1.24}
\end{equation*}
$$

Figure 1.3: The eight 8th roots of unity.
where n is a positive integer. If we take the polar form,

$$
\begin{equation*}
z=\rho(\cos \phi+i \sin \phi) \tag{1.25}
\end{equation*}
$$

this means

$$
\begin{equation*}
\rho^{n}(\cos n \phi+i \sin n \phi)=1, \tag{1.26}
\end{equation*}
$$

which implies

$$
\begin{align*}
\rho & =1, \tag{1.27a}\\
n \phi & =2 \pi k, \tag{1.27b}
\end{align*}
$$

where k is any integer. Thus the nth root of unity has the form

$$
\begin{equation*}
z=\cos \frac{2 \pi k}{n}+i \sin \frac{2 \pi k}{n} \tag{1.28}
\end{equation*}
$$

These are distinct for

$$
\begin{equation*}
k=0,1,2, \ldots, n-1 \tag{1.29}
\end{equation*}
$$

outside of these values of k, the roots repeat. Thus there are n distinct nth roots of unity. For example, for $n=8$, the roots are as shown in Fig. 1.3, in the complex plane.

