
Chapter 1

Review of Complex

Numbers

Complex numbers are defined in terms of the imaginary unit, i, having the
property

i2 = −1. (1.1)

A general complex number has the form

z = x+ iy, (1.2)

where x, y are real numbers. We also often write

z = Re z + iIm z, (1.3)

where Re z is the “real part of z,” and Im z is the “imaginary part of z.” Complex
numbers are added and multiplied just like real numbers: If

z1 = x1 + iy1, (1.4a)

z2 = x2 + iy2, (1.4b)

then

z1 + z2 = (x1 + x2) + i(y1 + y2), (1.5a)

z1z2 = x1x2 + iy1x2 + ix1y2 + i2y1y2

= x1x2 − y1y2 + i(x1y2 + x2y1). (1.5b)

The complex conjugate of a number is obtained by reversing the sign of i: If
z = x+ iy, we define the complex conjugate of z by

z∗ = x− iy. (1.6)
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Figure 1.1: Geometrical interpretation of a complex number z = x+ iy.

(Sometimes the notation z̄ is used for the complex conjugate of z.) Note that

Re z =
z + z∗

2
, (1.7a)

Im z =
z − z∗

2i
. (1.7b)

Note also that
zz∗ = x2 + y2 (1.8)

is purely real and non-negative, so we define the modulus, or magnitude, or
absolute value of z by

|z| =
√
zz∗ =

√

(Re z)2 + (Im z)2, (1.9)

where the positive square root is implied.
We give a simple geometrical interpretation to complex numbers, by thinking

of them as two-dimensional vectors, as sketched in Fig. 1.1. Here the length of
the vector is the magnitude of the complex number,

r = |z|, (1.10)

and the angle the vector makes with the real axis is θ, where

tan θ = y/x; (1.11)

the quadrant θ lies in is determined by the sign of x and y. We call

θ = arg z (1.12)

the argument or phase of z. The above geometrical picture is sometimes called
an Argand diagram.
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Figure 1.2: Geometrical interpretation of complex conjugation.

There is an arbitrariness in the choice of the argument θ of a complex number
z, for one can always add an arbitrary multiple of 2π to θ without changing z,

θ → θ + 2πn, n an integer, z → z. (1.13)

It is often convenient to define a single-valued argument function arg z. By
convention, the principal value of arg z is that phase angle which satisfies the
inequality

−π < arg z ≤ π. (1.14)

(Note that radian measure is always employed.) For every z there is a unique
arg z lying in this range.

The geometrical significance of complex conjugation is shown in Fig. 1.2.
Complex conjugation corresponds to reflection in the x-axis.

From the Argand diagram we can write down the “polar representation” of
a complex number,

z = r cos θ + ir sin θ

= r(cos θ + i sin θ), (1.15)

so if we have two complex numbers,

z1 = r1(cos θ1 + i sin θ1), (1.16a)

z2 = r2(cos θ2 + i sin θ2), (1.16b)

the product is

z1z2 = r1r2 {cos θ1 cos θ2 − sin θ1 sin θ2

+ i [cos θ1 sin θ2 + cos θ2 sin θ1]}
= r1r2 [cos(θ1 + θ2) + i sin(θ1 + θ2)] . (1.17)
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That is, the moduli of the complex numbers multiply,

|z1z2| = |z1||z2|, (1.18a)

while the arguments add,

arg(z1z2) = arg z1 + arg z2. (1.18b)

The latter statement is to be understood as modulo 2π, i.e., equality up to the
addition of an arbitrary integer multiple of 2π. In particular, note that
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|z| = 1, (1.19a)

while

0 = arg
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+ arg z, (1.19b)

implying that
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|z| , (1.20a)

arg
1

z
= −arg z. (1.20b)

1.1 De Moivre’s Theorem

From the above, if we choose a unit vector,

z = cos θ + i sin θ, (1.21)

successive powers follow a simple pattern:

z2 = cos 2θ + i sin 2θ, (1.22a)

z3 = cos 3θ + i sin 3θ, (1.22b)

. . . ,

zn = cosnθ + i sinnθ, (1.22c)

or
(cos θ + i sin θ)n = cosnθ + i sinnθ, (1.23)

where n is a positive integer. This is called De Moivre’s theorem.

1.2 Roots

Suppose we wish to find all the nth roots of unity, that is, all solutions to the
equation

zn = 1, (1.24)
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Figure 1.3: The eight 8th roots of unity.

where n is a positive integer. If we take the polar form,

z = ρ(cosφ+ i sinφ), (1.25)

this means
ρn(cosnφ+ i sinnφ) = 1, (1.26)

which implies

ρ = 1, (1.27a)

nφ = 2πk, (1.27b)

where k is any integer. Thus the nth root of unity has the form

z = cos
2πk

n
+ i sin

2πk

n
. (1.28)

These are distinct for
k = 0, 1, 2, . . . , n− 1; (1.29)

outside of these values of k, the roots repeat. Thus there are n distinct nth
roots of unity. For example, for n = 8, the roots are as shown in Fig. 1.3, in the
complex plane.


