
Chapter 24

Study Guide

Chapter 12 discussed compatible observables, which can be simultaneously
measured and specified. These are characterized by the fact that compatible
physical properties are represented by Hermitian operators that commute with
each other: If A and B are compatible,

[A,B] = 0. (24.1)

A state of a physical system is characterized by specifying the values of a max-
imal number of compatible observables,

(Ai − a′i)|{a′1, a′2, . . . , a′c}〉 = 0, (24.2)

where c is the number of compatible properties.
Chapter 13 discussed the unitary transformations that represent tranla-

tions and rotations. For an infinitesimal transformation,

X = U−1XU, 〈 | = 〈 |U, | 〉 = U−1| 〉, (24.3)

where

U = 1 +
i

h̄
G, (24.4)

where G = G† is the generator of the transformation. For a spatial translation
of the origin through an amount δǫ,

Gδǫ = δǫ · P, (24.5)

where P is the linear momentum. For a rotation through an angle δω, the
generator is

Gδω = δω · J, (24.6)

where J is the angular momentum. A scalar S does not change under a rotation,
so

[S, δω · J] = 0, (24.7)
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while a vector operator V transforms as

1

ih̄
[V, δω · J] = δω × V. (24.8)

In particular, J2 is a scalar,
[J2,J] = 0, (24.9)

while J is a vector, so
[Jx, Jy] = ih̄Jz , (24.10)

and so on, by cyclic permutations. Since J2 and Jz are compatible, we can
specify states by values of both of these operators:

J2|jm〉 = j(j + 1)h̄2|jm〉, Jz|jm〉 = mh̄|jm〉. (24.11)

Because J+ = Jx + iJy and J− = Jx − iJy are raising and lowering operators,

J+|jm〉 = h̄
√

(j −m)(j +m+ 1)|jm+ 1〉, (24.12a)

J−|jm〉 = h̄
√

(j +m)(j −m+ 1)|jm− 1〉, (24.12b)

where the factors are required so that the states are properly normalized, it is
easy to see that j is a nonnegative integer, and m ranges by integer steps from
−j to j. For a given j, there are 2j + 1 values of m.

Chapter 14 approached the harmonic oscillator by considering the limit of
large j. In this way we obtain raising and lowering operators

y|n〉 =
√
n|n− 1〉, y†|n〉 =

√
n+ 1|n+ 1〉. (24.13)

These operators satisfy
[y, y†] = 1. (24.14)

The states labelled by n are eigenvectors of y†y:

y†y|n〉 = n|n〉. (24.15)

Instead of the non-Hermitian operators y and y† we can use Hermitian variables
q and p,

y =
q + ip√

2
, y† =

q − ip√
2
, (24.16)

which satisfy
[q, p] = i. (24.17)

We can introduce the Hamiltonian

q2 + p2

2
= y†y +

1

2
,

(

q2 + p2

2

)′

= n+
1

2
. (24.18)

On a position eigenstate,

〈q′|p =
1

i

∂

∂q′
〈q′|. (24.19)



221 Version of December 10, 2012

From the commutation relation we derive the uncertainty relation

∆q∆p ≥ 1

2
. (24.20)

The ground state is characterized by y|0〉 = 0, from which we deduce the wave-
function

ψ0(q
′) = 〈q′|0〉 =

1

π1/4
e−

1
2 q

′2

. (24.21)

The general harmonic oscillator wavefunction is

ψn(q′) =
1√

π1/22nn!
Hn(q

′)e−
1
2 q

′2

, (24.22)

where Hn(q
′) are the Hermite polynomials,

H0(q
′) = 1, H1(q

′) = 2q′, H2(q
′) = 4q′2 − 2, . . . . (24.23)

The wavefunctions are orthonormal,

〈n|n′〉 =

∫ ∞

−∞

dq′ψn(q
′)∗ψn′(q′) = δnn′ . (24.24)

These dimensionless variables can be rescaled to physical coordinates and mo-
mentum,

p̂ =
√
mh̄ωp, q̂ =

√

h̄

mω
q, (24.25)

corresponding to the Hamiltonian

Ĥ =
p̂2

2m
+

1

2
mω2q̂2 = Hh̄ω, (24.26)

which yields the energy eigenvalues

Ên =

(

n+
1

2

)

h̄ω (24.27)

Chapter 15 begins by deriving the momentum-space wavefunctions for the
harmonic oscillator,

ψn(p′) = 〈p′|n〉 =
(−1)n√
π1/22nn!

Hn(p′)e−
1
2p

′2

. (24.28)

Then we show how to construct angular momentum in general from two oscil-
lators. Construct a two-component object

y =

(

y+
y−

)

, (24.29)

where
[y+, y

†
+] = [y−, y

†
−] = 1, [y−, y+] = [y+, y

†
−] = 0, (24.30)
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Then a general angular momentum can be written as

1

h̄
J = y†

1

2
σy, (24.31)

in terms of the spin-1/2 Pauli spin matrices.
Chapter 16 returns to translations, and suggests in terms of a position

operator R we have a decomposition of angular momentum into orbital and
spin angular momentum,

J = L + S, L = R × P. (24.32)

R and P satisfy
[Rk, Pl] = ih̄δkl, (24.33)

while since the order of translations does not matter,

[Pk, Pl] = 0. (24.34)

Analogously,
[Rk, Rl] = 0. (24.35)

The spin S commutes with both R and P, but by itself satisfies the commutation
relations of angular momentum,

S× S = ih̄S. (24.36)

Chapter 17 extends the transformations to Galilean transformations. A
boost is a transformation to a coordinate frame moving with velocity δv with
respect to the original frame. The generator is given by

Gδv = δv · N. (24.37)

N must be a vector, which supplies

[J, δv · N] = ih̄δv × N, (24.38)

which is reminiscent of
[J, δǫ ·P] = ih̄δǫ × P. (24.39)

The boost generators satisfy the commutation relations

[Nk, Nl] = 0, (24.40)

while the mass M of the system is introduced through

[Pk, Nl] = ih̄Mδkl. (24.41)

The latter reflects the phase ambiguity in defining generators. Since a boost is
like a translation that grows with time, we expect

δδvR = δvt =
1

ih̄
[R, δv · N]. (24.42)
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This leads to the construction

N = Pt−MR. (24.43)

Time translations are given in terms of the Hamiltonian,

Gδt = −δtH, (24.44)

For an isolated system, the Hamiltonian is invariant under spatial translations,
or

[Pk, H ] = 0. (24.45)

If the system is also rotationally invariant,

[Jk, H ] = 0, (24.46)

that is, H is a scalar. Under a boost,

1

ih̄
[N, H ] + P = 0. (24.47)

In Chapter 18, we continue to study dynamics, and show for a dynamical
variable,

d

dt
v(t) =

1

ih̄
[v(t), H ]. (24.48)

The general Heisenberg equation for a function of a dynamical variable is

d

dt
F =

∂

∂t
F +

1

ih̄
[F,H ]. (24.49)

From the boost commutator, we then learn that the velocity of the center of
mass of the system is a constant, P/M . From this we conclude that

H =
P2

2M
+Hint, (24.50)

where Hint does not depend on either the center of mass coordinate R or the
total momentum P.

Chapter 19 deals with the hydrogen atom,

H =
p2

2µ
− Ze2

r
, (24.51)

where p is the relative momentum of the electron and nucleus, µ is the reduced
mass, and Ze is the charge of the nucleus. This system is rotationally invariant,
so the orbital angular momentum must be conserved,

L = r × p,
d

dt
L = 0. (24.52)

But there is another constant of the motion, the axial vector,

A =
r

r
− p× L

µZe2
,

d

dt
A = 0. (24.53)
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Quantum mechanically, A must be modified to make it Hermitian,

p× L → p× L − ih̄p. (24.54)

We then can show that

J(±) =
1

2

(

L ±
√

µZ2e4

−2H
A

)

(24.55)

form two independent angular momenta, for example,

[J (±)
x , J (±)

y ] = ih̄J (±)
z , [J (±)

x , J (∓)
y ] = 0. (24.56)

From this we conclude that the energy eigenvalues are

En = −µZ
2e4

2n2h̄2 , n = 1, 2, 3, . . . . (24.57)

Here n = 2j+1, where j is the angular momentum quantum number associated
with either J2,

(J(±))2′ = j(j + 1)h̄2. (24.58)

Therefore there are n2 states with the same value of energy En. These states
are characterized by angular momentum quantum numbers l = 0, 1, . . . , n − 1,
where for a given l there are 2l + 1 possible values of the magnetic quantum
number m. The ground-state wavefunction is easily worked out by noting the
state vector is annihilated by both L and A,

ψ100 =
1√
π

(

Z

a0

)3/2

e−Zr/a0 , (24.59)

in terms of the Bohr radius a0 = h̄2/µe2.
Chapter 20 deals with the addition of angular momentum. That is, if we

have two independent systems characterized by angular momentum generators
J1 and J2, the whole system has angular momentum

J = J1 + J2. (24.60)

This means, in particular, that magnetic quantum numbers add:

m = m1 +m2. (24.61)

The possible values of the total angular momentum quantum number j range
from j = j1 + j2 down to |j1 − j2|. This is verified by counting,

(2j1 + 1)(2j2 + 1) =

j1+j2
∑

|j1−j2|

(2j + 1). (24.62)
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Rotation matrices were the subject of Chapter 21. We showed how a
general rotation is characterized by three Euler angles, φ, θ, ψ. A general
rotation operator is

U(φ, θ, ψ) = eiψJz/h̄eiθJy/h̄eiφJz/h̄, (24.63)

corresponding to first rotating about the z axis through the angle φ, then about
the new y axis by the angle θ, and finally about the final z axis by the angle ψ.
Recalling that a general angular momentum can be constructed two spin-1/2
systems, described by oscillator variables, we have

|jm〉 =
(y†+)j+m(y†−)j−m
√

(j +m)!(j −m)!
|0〉, (24.64)

where
|0〉 = |n+ = 0, n− = 0〉 = |j = 0,m = 0〉. (24.65)

Using this the general rotation matrix can be determined.
In Chapter 22 we consider the most interesting case, that of the spherical

harmonics, defined by

〈l0|U(θ, φ)|lm〉 =

√

4π

2l+ 1
Ylm(θ, φ). (24.66)

These are read off by expanding the generating function

1

2ll!

(

a · r

r

)l

=

l
∑

m=−l

√

4π

2l + 1
Ylm(θ, φ)

(y+)j+m(y−)j−m
√

(j +m)!(j −m)!
(24.67)

in terms of the null vector

a = (−y2
+ + y2

−,−iy2
+ − iy2

−, 2y+y−). (24.68)

From the generating function, we can prove the orthonormality condition,
∫

dΩY ∗
lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ , dΩ = sin θ dθ dφ. (24.69)

From the generating function expression we can also see

〈0| 1

2ll!

(

a · r

r

)l

=

l
∑

m=−l

√

4π

2l + 1
Ylm(θ, φ)〈lm|, (24.70)

which allows us to show that on spherical harmonics

L = r× h̄

i
∇ (24.71)

acts just like angular momentum. In particular

(Lx ± iLy)Ylm = h̄
√

(l ∓m)(l ±m+ 1)Yl,m±1. (24.72)
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Finally, in Chapter 23 we return to the hydrogen atom. We show that the
general form of the wavefunction is

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ). (24.73)

Then we considered perturbations due to constant magnetic and electric fields.
For the former, the Zeeman effect, the energies are shifted depending on the
value of the magnetic quantum number,

Enm = En − µBBm, µB =
eh̄

2µc
, (24.74)

the Bohr magneton. For the electric field, the Stark effect, we find, up to a
unitary transformation, that the effective Hamiltonian is

H = H0 +
3

4

Ze2

H0
A · eE , (24.75)

in terms of the constant of the motion, the axial vector. The Stark shift is
expressed in terms of the constituent magnetic quantum numbers, m(±):

En;m(+),m(−) = En − 3

4

na0

Z
eE(m(+) −m(−)). (24.76)


