Introduction to Quantum Mechanics II Quiz 12

Name:

November 16, 2012

Let

$$J_y(\theta) = e^{-iJ_x\theta/\hbar} J_y e^{iJ_x\theta/\hbar},$$

and

$$J_z(\theta) = e^{-iJ_x\theta/\hbar} J_z e^{iJ_x\theta/\hbar}.$$

By differentiating with respect to θ , and solving the resulting differential equations, compute $J_y(\theta)$ and $J_z(\theta)$ in terms of J_y and J_z . Why is this obvious geometrically? What happens if J_y , J_z are replaced by components of any vector operator V_y , V_z ?

Solution:

$$\frac{d}{d\theta}J_y(\theta) = \frac{i}{\hbar}e^{-iJ_x\theta/\hbar}[J_y, J_x]e^{iJ_x\theta/\hbar} = J_z(\theta),$$
$$\frac{d}{d\theta}J_z(\theta) = \frac{i}{\hbar}e^{-iJ_x\theta/\hbar}[J_z, J_x]e^{iJ_x\theta/\hbar} = -J_y(\theta).$$

Imposing the boundary conditions at $\theta = 0$, $J_z(0) = J_z$, $J_y(0) = J_y$, we get

$$J_y(\theta) = J_y \cos \theta + J_z \sin \theta, \quad J_z(\theta) = J_z \cos \theta - J_y \sin \theta,$$

which is exactly how a vector behaves under a rotation about the x axis through an angle θ . This also holds for any vector operator, since all we used in the above was

$$[V_y, J_x] = -i\hbar V_z, \quad]V_z, J_x] = i\hbar V_y,$$

 \mathbf{SO}

$$V_y(\theta) = V_y \cos \theta + V_z \sin \theta, \quad V_z(\theta) = V_z \cos \theta - V_y \sin \theta,$$