Introduction to Quantum Mechanics II

2nd Homework Assignment
Due: Friday, September 14, 2012

September 9, 2012
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where ¢” is a number, by differentiating with respect to ¢”, and derive
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where p” is a number, by differentiating with respect to p”. What is
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Draw a conclusion from this, recalling that unitary transformations
preserve lengths. From this, derive
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2. Use the result of Problem 1 to evaluate

0

/ / a / /
aTI,<q Ip"), aT),(Q 1p').

From these derive .
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where C' is a normalization constant. By looking at
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prove that C = 1/\/%
3. Verify explicitly
| ddvnla) vala) = 0.
Compute Hs(q'), Hy(q').

4. From

derive

Check this for n =4,3,2,1,0. From
y'ln) = vVn+1jn+1)
derive
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Add the two statements to obtain
2¢' Ho(q'") = Hpya(q') + 2nH, 1 (q).

This recursion relation gives a way of recursively calculating H,,,; in
terms of H,, H, 1. Check this for n = 3,2,1,0.



5. Use the results of Problem 4 to deduce the differential equation

Show the equivalence of this with

d2
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This is the “time-independent Schrodinger equation” for the harmonic
oscillator.



