
Chapter 23

Hydrogen Atom II

The angular parts of the wavefunctions for the hydrogen atom, governed by the
Hamiltonian

H =
p2

2µ
− Ze2

r
, (23.1)

are given by the spherical harmonics, Ylm(θ, φ),

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ), (23.2)

in terms of the principal quantum number n, the orbital angular momentum
quantum number l, and the magnetic quantum number m. The energies depend
only on n:

En = −
(

Ze2

h̄c

)2
µc2

2n2
= −13.60 eV

n2
, (23.3)

where, although the speed of light does not enter into this nonrelativistic cal-
culation, we have introduced it, because then the energies are given in terms of
the rest energy of the electron, µc2 = 0.511 MeV, and the dimensionless fine

structure constant,

α =
e2

h̄c
=

1

137.036 · · ·. (23.4)

The relevant distance scale is the Bohr radius,

a0 =
h̄2

µe2
= 0.529 × 10−8 cm. (23.5)

The numbers given are for the ideal hydrogen atom, with µ = me and Z = 1.

The radial wavefunctions are easily given in terms of ρ = 2Zr/na0, for n = 1,
2, and 3:

n = 1(1s) : R10 =

(

Z

a0

)3/2

2e−ρ/2, (23.6)
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n = 2, l = 0(2s) : R20 =

(

Z

a0

)3/2
1

2
√

2
(2 − ρ)e−ρ/2, (23.7a)

n = 2, l = 1(2p) : R21 =

(

Z

a0

)3/2
1

2
√

6
ρe−ρ/2, (23.7b)

n = 3, l = 0(3s) : R30 =

(

Z

a0

)3/2
1

9
√

3
(6 − 6ρ+ ρ2)e−ρ/2, (23.8a)

n = 3, l = 1(3p) : R31 =

(

Z

a0

)3/2
1

9
√

6
(4 − ρ)ρe−ρ/2, (23.8b)

n = 3, l = 2(3d) : R32 =

(

Z

a0

)3/2
1

9
√

30
ρ2e−ρ/2. (23.8c)

In homework, you will verify that these agree with the wavefunctions found
previously in Chapter 19, and check that the n = 3 states are correct.

23.1 Perturbations due to external fields

Let us now consider the effect of electric and magnetic fields on the hydrogen
atom. A constant magnetic field B is described by the vector potential

A =
1

2
B× r, → B = ∇ × A. (23.9)

A constant electric field E is described by a scalar potential

ϕ = −E · r → E = −∇ϕ. (23.10)

Thus the Hamiltonian for the perturbed atom is

H =

(

p − e
cA

)2

2µ
− Ze2

r
+ eφ. (23.11)

We will assume that the electric and magnetic fields are weak. Expand out the
term involving the magnetic field:

(

p − e
2cB× r

)2

2µ
→ p2

2µ
− e

2µc
B · r × p +

(

e
2cB× r

)2

2µ
, (23.12)

and we will neglect the last term in the following, as being small. We recognize
that L = r × p. Then, if only the external magnetic field is present, [H0 is the
unperturbed hydrogen Hamiltonian (23.1)]

H = H0 −
eB

2µc
Lz, (23.13)
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where Lz takes on the value mh̄ in a state with magnetic quantum number m,

Enm = En − eh̄

2µc
Bm. (23.14)

This exhibits what is called Zeeman splitting. As a result, the n2 degeneracy
is split. Since l = 0, 1, . . . , n − 1, the possible different values of m range from
n − 1, n − 2, . . . ,−(n − 1), so there are now 2n − 1 distinct energy levels, but
some degeneracy remains.

The effect of the electric field is called the Stark effect. The corresponding
Hamiltonian is

H = H0 − eE · r. (23.15)

Because the last term is not a constant of the motion, we want to find an
effective replacement for r. Recall that we solved the unperturbed hydrogen
atom problem by introducing the axial vector (19.12) (not to be confused with
the vector potential)

A =
r

r
− 1

µZe2
p × L; (23.16)

we expect the constant of the motion A to set the scale for r. (We will here
ignore noncommutativity, which will not affect the answer.) Rewrite

p× L = p× (r × p) = −p(p · r) + p2r. (23.17)

Now, without a vector potential,

p · r = µv · r = µ
d

dt

r2

2
, (23.18)

and

p2 = 2µ

(

H0 +
Ze2

r

)

. (23.19)

So

p × L = −pµ
d

dt

r2

2
+ 2µ

(

H0 +
Ze2

r

)

r

= − d

dt

(

pµ
r2

2

)

− Ze2

r3
rµ
r2

2
+ 2µH0r + 2µZe2

r

r

= − d

dt

(

µp
r2

2

)

+ 2µH0r +
3

2
µZe2

[

A +
1

µZe2
p× L

]

, (23.20)

where, in the second line we used the equation of motion,

dp

dt
= −Ze

2

r3
r, (23.21)

and in the last line we used Eq. (23.16). So then we have

2µH0r = −3

2
µZe2A +

d

dt

(

µp
r2

2

)

− d

dt

(

1

2
µr × L

)

, (23.22)
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where the last uses

−1

2
p× L = −1

2
µ
dr

dt
× L = − d

dt

(

1

2
µr × L

)

, (23.23)

because L is a constant. Thus, we have

r = −3

4

Ze2A

H0
+
d

dt
F, (23.24)

where F is an operator, where the order of factors has to be considered. However,
because the last term is a total time derivative, when we do a time average of
this, we might expect to get zero. To see that this term has no effect, write the
perturbation in Eq. (23.15) is

−eE · r =
3

4

Ze2

H0
eA · E +

d

dt
G. (23.25)

Thus we write the perturbed Hamiltonian as

H = H0 +
3

4

Ze2

H0
A · eE +

1

ih̄
[G,H0], (23.26)

because G is linear in E , so the time dependence can only arise from H0.
Now because we are regarding E as small, and G depends linearly on E , we

can write this as

H =

(

1 − i

h̄
G

) (

H0 +
3

4

Ze2

H0
A · eE

) (

1 +
i

h̄
G

)

+O(E2). (23.27)

So to this order, we have an infinitesimal unitary transformation. Because a
unitary transformation does not change the energy spectrum, we can replace H
by

H = H0 +
3

4

Ze2

H0
A · eE (23.28)

We have thus solved the problem, since A is a constant of the motion.
Now recall the operator J(±) defined in Eq. (19.42). For a state with definite

n,

J(±) =
1

2
(L ± nh̄A). (23.29)

Thus
J(+) − J(−) = nh̄A, (23.30)

or if we choose the direction of the electric field to be the z direction,

nAz = m(+) −m(−). (23.31)

Now, for each constituent spin,

m = j, . . . ,−j =
n− 1

2
− k, (23.32)
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where the integer k runes from 0 to n − 1. Thus m(+) −m(−) = k(−) − k(+),
and thus the first order Stark shift is (Ze2/H0 → −2n2a0/Z)

E = En − 3

2

na0

Z
eE(k(−) − k(+)); (23.33)

the level splitting exhibits equal spacing. The atom exhibits an effective electric
dipole moment. Since k(−) − k(+) ranges from n− 1 to −(n− 1), again the n2

degenerate hydrogenic states are split into 2n− 1 levels, just as in the Zeeman
effect.

Suppose both E and H are present, and are parallel and weak. Then the
energy shift is just the sum of the two contributions,

E = En − 3

2

na0

Z
eE(k(−) − k(+)) − eh̄

2µc
Bm, (23.34)

where
k(−) − k(+) = m(+) −m(−), m = m(+) +m(−), (23.35)

so

E = En +

(

−3

2

na0

Z
eE − eh̄

2µc
B

)

m(+) +

(

3

2

na0

Z
eE − eh̄

2µc
B

)

m(−) (23.36)

We now have (2j+ 1)(2j + 1) = n2 distinct levels, the degeneracy is completely
broken, except for special values of E/B.

There are two characteristic lengths appearing here:

a0 =
h̄2

µe2
, λc =

h̄

µc
, (23.37)

the second being called the Compton wavelength. What is the ratio of these:

λc

a0
=
e2

h̄c
= α. (23.38)

This is of order of v/c for the electron in the atom, since p0 = µv0 = h̄
a0

.
Therefore, an enormous magnetic field is necessary to give an effect of the same
size as that produced by an electric field.


