
Chapter 22

Spherical Harmonics

Let us now consider the above construction with m = 0 and j = l, an integer.
Let us also restore the φ dependence, by undoing the substitution (21.81):

y+ → eiφ/2y+, y− → e−iφ/2y−. (22.1)

Then the operator structure in Eq. (21.83) becomes

1

l!

[(

cos
θ

2
ei φ

2 y+ + sin
θ

2
e−i φ

2 y−

) (

− sin
θ

2
ei φ

2 y+ + cos
θ

2
e−i φ

2 y−

)]l

=

l
∑

m′=−l

〈l0|U(θ, φ)|lm′〉
yl+m′

+ yl−m′

−
√

(l +m′)!(l −m′)!
. (22.2)

The product of the two factors in the square bracket is

−
1

2
sin θeiφy2

+ +
1

2
sin θe−iφy2

− + cos θ y+y−, (22.3)

so the left side of Eq. (22.2) is

[− sin θeiφy2
+ + sin θe−iφy2

− + 2 cos θy+y−]l

2ll!
. (22.4)

Now go from polar to Cartesian coordinates:

cos θ =
z

r
, sin θe±iφ =

x± iy

r
, (22.5)

so the quantity in the square brackets is 1/r times

−(x+ iy)y2
+ + (x− iy)y2

− + 2zy+y− = r · a (22.6)

where the vector a has the components

ax = −y2
+ + y2

−, ay = −iy2
+ − iy2

−, az = 2y+y−. (22.7)

201 Version of November 29, 2012



202 Version of November 29, 2012CHAPTER 22. SPHERICAL HARMONICS

Note that

a · a = (−y2
+ + y−)2 + (−iy2

+ − iy2
−) + (2y+y−)2 = 0, (22.8)

so a is a vector of zero length, or a null vector. This is only possible because
the components of a are complex. As a consequence, (a · r)l is a solution of
Laplace’s equation:

∇(a · r)l = l(a · r)l−1
a, (22.9)

and then

∇2(a · r)l = ∇ · ∇(a · r)l = l(l− 1)(a · r)l−2
a · a = 0. (22.10)

This leads to Legendre polynomials and spherical harmonics.
So we see that (r · a)l, which is a special polynomial of degree l, is a solution

of Laplace’s equation. How many different, independent polynomials of degree
l that satisfy Laplace’s equation are there? Let’s look at some examples:

l = 0 : constant, 1 polynomial, (22.11a)

l = 1 : x, y, z, 3 polynomials, (22.11b)

l = 2 : x2, y2, z2, xy, xz, yz, 6 polynomials. (22.11c)

For l = 0, 1, all the polynomials satisfy Laplace’s equation. For l = 2, the xy,
xz, and yz monomials obviously satisfy Laplace’s equation, but x2, y2, and z2

do not. If we consider a linear combination of these,

f = ax2 + by2 + cz2, ∇2f = 2(a+ b+ c), (22.12)

so the Laplacian on f vanishes only if a+ b+ c = 0. So there is one constraint,
and there are 5 independent polynomials that satisfies Laplace’s equation.

Let’s do the count in general. The most general polynomial of degree l has
the form

∑

m+n+p=l

Amnpx
mynzp. (22.13)

How many different choices of non-negative integers, m, n, p, are there such that
m + n + p = l? For a given p, how many different ways are there of satisfying
m+ n = l − p? Because m can take on all integer values from 0 to l − p, there
are l − p+ 1 ways. Then we sum over all possible values of p:

l
∑

p=0

(l − p+ 1) = (l + 1)
l + 2

2
, (22.14)

which is the number of terms in the sum times the average term. (This is just an
arithmetic series.) This gives for l = 0, 1, 2 the number of polynomials being 1, 3,
6, as found above. Now, how many of these are solutions of Laplace’s equation?
When the Laplacian acts on a polynomial of degree l it produces a polynomial of
degree l − 2. So we need to subtract the number of these, which is the number
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of conditions imposed in order to satisfy Laplace’s equation. Therefore, the
number of solutions of Laplace’s equation which are polynomials of degree l is

(l + 1)(l + 2)

2
−

(l − 1)l

2
= 2l+ 1. (22.15)

Back to the particular form of the solution of Laplace’s equation (r · a)l.
How many of these are there? It is obvious from the structure that they are all
there. But let us exhibit this explicitly. Return to the numerator of (22.4),

[

− sin θeiφy2
+ + sin θe−iφy2

− + 2 cos θy+y−
]l

=

(

−
e−iφy2

−

sin θ

)l
[

(

eiφ sin θ
y+
y−

)2

− 2 cos θ sin θeiφ y+
y−

− sin2 θ

]l

=

(

−
e−iφy2

−

sin θ

)l
[

(

eiφ sin θ
y+
y−

− cos θ

)2

− 1

]l

. (22.16)

We expand in y+/y− in order to pick off 〈l0|U(θ, φ)|lm〉.
We may note that a Taylor series is another aspect of what we have been

doing all along. Remember

eiq′pqe−iq′p = q + q′, (22.17)

which depends only on the algebraic relation between q and p,

1

i
[q, p] = 1, (22.18)

because
∂

∂q′

[

eiq′pqe−iq′p
]

= eiq′p 1

i
[q, p]e−iq′p = 1. (22.19)

In general,

eiq′pf(q)e−iq′p = f(q + q′). (22.20)

But now think of differential operators, as in p = 1

i
∂

∂q′′
, which is to say, generi-

cally,

ey ∂
∂xx e−y ∂

∂x = x+ y, (22.21)

where the exponentials should be thought of as represented by their power series,

ey ∂
∂x =

∞
∑

n=0

yn

n!

(

∂

∂x

)n

. (22.22)

We can verify Eq. (22.21) by differentiating with respect to y:

∂

∂y

[

ey ∂
∂xxe−y ∂

∂x

]

= ey ∂
∂x

[

∂

∂x
x− x

∂

∂x

]

e−y ∂
∂x = 1, (22.23)
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which means that the coefficient of y is 1. Then

ey ∂
∂x f(x)e−y ∂

∂x = f
(

ey ∂
∂xx e−y ∂

∂x

)

= f(x+ y), (22.24)

which is really the same as the q p statement (22.20). This can be rewritten as

f(x+ y) = ey ∂
∂x f(x) =

∞
∑

n=0

yn

n!

dn

dxn
f(x). (22.25)

where the first equality is true because there is nothing for ∂
∂x to act on on the

right, and the second comes from the series definition of the exponential (22.22).
The Taylor series just gives the effect of displacement.

Now return to the expansion of Eq. (22.4) we wish to carry out:

1

2ll!

(

−
e−iφ

sin θ
y2
−

)l
[

(

cos θ − eiφ sin θ
y+
y−

)2

− 1

]l

. (22.26)

Think of this as the Taylor expansion (22.25) with x = cos θ, y = − sin θeiφy+/y−,
and n = l +m, m = −l,−l+ 1, . . .. Then the expansion of Eq. (22.26) is

1

2ll!

(

−
e−iφ

sin θ
y2
−

)l l
∑

m=−l

(

−eiφ sin θ y+

y−

)l+m

(l +m)!

(

d

d cos θ

)l+m

(cos2 θ− 1)l. (22.27)

Note that in the last factor the maximum power of of cos θ is 2l, which means
that m ≤ l. Now, we can read off the answer by comparing with

∑

m

〈l0|U(θ, φ)|lm〉
yl+m
+ yl−m

−
√

(l +m)!(l −m)!
, (22.28)

and then we obtain

〈l0|U(θ, φ)|lm〉 = eimφ

√

(l −m)!

(l +m)!
(− sin θ)m

(

d

d cos θ

)l+m
(cos2 θ − 1)l

2ll!
.

(22.29)
In homework, you derive the equivalent form

〈l0|U(θ, φ)|lm〉 = eimφ

√

(l +m)!

(l −m)!
(sin θ)−m

(

d

d cos θ

)l−m
(cos2 θ − 1)l

2ll!
,

(22.30)
which may be obtained by expanding in y−/y+ instead of y+/y−

Example: In the case m = 0,

〈l0|U(θ, φ)|l0〉 =

(

d

d cos θ

)l
(cos2 θ − 1)l

2ll!
. (22.31)
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These are Legendre’s polynomials. For l = 1 this is

P1(cos θ) = cos θ, (22.32)

which is familiar as the probability amplitude 〈10, z̄|10, z〉. For l = 2 the Leg-
endre polynomial is

P2(cos θ) =
d2

d cos θ2

(

cos4 θ − 2 cos2 θ + 1

8

)

=
1

2
(3 cos2 θ − 1). (22.33)

In general, what we have been studying are polynomial solutions of Laplace’s
equation:

∇2(polynomial of degree l) = 0, (22.34)

which polynomial we write as a solid harmonic

rlf(θ, φ), (22.35)

where the function of θ and φ is a surface or spherical harmonic. The standard
notation for spherical harmonics is

〈l0|U(θ, φ)|lm〉 =

√

4π

2l+ 1
Ylm(θ, φ). (22.36)

The spherical harmonics are normalized such that
∫

dΩY ∗

lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ , (22.37)

where dΩ is the element of solid angle, or the surface element on the unit sphere.
In spherical polar coordinates,

dΩ = dθ sin θdφ = d cos θ dφ. (22.38)

The statement (22.37) says that the spherical harmonics form an orthonormal
set of functions on the unit sphere.

We prove this statement by going back to the beginning, Eq. (22.2):

1

2ll!

(

r

r
· a

)l

=

l
∑

m=−l

√

4π

2l + 1
Ylm(θ, φ)

yl+m
+ yl−m

−
√

(l +m)!(l −m)!
. (22.39)

We recall that the null vector a is quadratic in the ys, and that here y+ and y−
just play the role of identifying powers; the operator properties are irrelevant.
We change the notation to emphasize this:

y+ → ψ+, y− → ψ−, (22.40)

where ψ± are just complex numbers. Consequently, from Eq. (22.7),

ax = −y2
+ + y2

− → −ψ2
+ + ψ2

−, (22.41)
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etc. Let us define
ψl+m

+ ψl−m
−

√

(l +m)!(l −m)!
≡ ψlm. (22.42)

Then Eq. (22.39) becomes

(

r

r · a
)l

2ll!
=

l
∑

m=−l

√

4π

2l+ 1
Ylm(θ, φ)ψlm. (22.43)

The complex conjugate of this numerical structure is

(

r

r · a∗
)l

2ll!
=

l
∑

m=−l

√

4π

2l+ 1
Ylm(θ, φ)∗ψ∗

lm, (22.44)

so if we multiply these two expressions together, and integrate over all solid
angles, we get

∫

dΩ

(

r

r · a∗
)l

2ll!

(

r

r · a
)l′

2l′ l′!
=

∑

mm′

ψ∗

lm

√

4π

2l+ 1

[
∫

dΩYlm(θ, φ)∗Yl′m′(θ, φ)

]

×

√

4π

2l′ + 1
ψl′m′ . (22.45)

What we are asked to evaluate is
∫

dΩ
(

r

r
· a∗

)l (r

r
· a

)l′

= f(a,a∗), (22.46)

which is a function having l′ factors of a and l factors of a
∗. But f must be a

scalar, since the left side is independent of the coordinate system. f can only
depend on

a · a = 0, a
∗ · a∗ = 0, a · a∗ 6= 0. (22.47)

So this is zero unless the number of as equals the number of a
∗s, so we conclude

that l = l′:
∫

dΩ
(

r

r
· a∗

)l (

r

r
· a

)l′

= δll′C(a · a∗)l. (22.48)

How do we calculate the constant C? Take a particular example of a null vector:

a = (1, i, 0), a
∗ = (1,−i, 0), a · a = a

∗ · a∗ = 0, a · a∗ = 2. (22.49)

Putting this into Eq. (22.48), we find
∫

sin θ dθ dφ (sin θe−iφ)l(sin θeiφ)l = C2l. (22.50)

Letting z = cos θ, this is the same as

2π

∫ 1

−1

dz (1 − z2)l = C2l. (22.51)
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The integral is symmetric about z = 0; define

Il =

∫ 1

0

dz (1 − z2)l. (22.52)

The first three of these integrals are evaluated to be

I0 = 1, I1 =
2

3
, I2 =

8

15
. (22.53)

In homework, you will prove in general

Il =
(2ll!)2

(2l + 1)!
. (22.54)

Therefore, we conclude that

C = 4π2l (l!)2

(2l+ 1)!
(22.55)

For l = l′ our formula (22.45) reads

4π

(2l + 1)!

(a · a∗)
l

2l
=

∑

mm′

ψ∗

lm

4π

2l+ 1

[
∫

dΩYlm(θ, φ)∗Ylm′(θ, φ)

]

ψlm′ , (22.56)

where

ψlm′ =
ψl+m′

+ ψl−m′

−
√

(l +m′)!(l −m′)!
, ψ∗

lm =
ψ∗l+m

+ ψ∗l−m
−

√

(l +m)!(l −m)!
. (22.57)

In the homework, you also prove

a
∗ · a = 2(ψ∗ψ)2, (22.58)

which we here prove by brute force:

a
∗ · a = | − ψ2

+ + ψ2
−|

2 + | − i(ψ2
+ + ψ2

−)|2 + |2ψ+ψ−|
2

= 2[(ψ∗

+ψ+)2 + (ψ∗

−ψ−)2] + 4(ψ∗

+ψ+)(ψ∗

−ψ−)

= 2[ψ∗

+ψ+ + ψ∗

−ψ−]2, (22.59)

as stated. Thus we write Eq. (22.56) as

4π

2l+ 1

(ψ∗
+ψ+ + ψ∗

−ψ−)2l

(2l)!
=

∑

mm′

ψ∗

lm

4π

2l + 1

[
∫

dΩYlm(θ, φ)∗Ylm′(θ, φ)

]

ψlm′ ,

(22.60)
Expand this out by the binomial theorem—which is just Taylor’s series:

(x+ y)n =
∑

k=0

yk

k!

(

d

dx

)k

xn =

n
∑

k=0

n!

k!(n− k)!
xn−kyk. (22.61)
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By substituting

n→ 2l, k → l−m, n− k → l +m, (22.62)

we can now write Eq. (22.60) as

(ψ∗
+ψ+ + ψ∗

−ψ−)2l

(2l)!
=

∑

m

ψ∗l+m
+ ψ∗l−m

− ψl+m
+ ψl−m

−
√

(l +m)!(l −m)!
√

(l +m)!(l −m)!

=

l
∑

m=−l

ψ∗

lmψlm

=
∑

mm′

ψ∗

lm

[
∫

dΩYlm(θ, φ)∗Ylm′(θ, φ)

]

ψlm′ .

(22.63)

Thus, we conclude as promised,
∫

dΩY ∗

lm(θ, φ)Ylm′ (θ, φ) = δmm′ . (22.64)

The spherical harmonics are orthonormal functions. What do they mean?
For each l, we have m = l, l− 1, . . . ,−l. What kind of angular momentum does
Ylm represent? Reinsert the operators:

(

r

r · a
)l

2ll!
=

∑

m

√

4π

2l+ 1
Ylm(θ, φ)

yl+m
+ yl−m

−
√

(l +m)!(l −m)!
. (22.65)

Let these operators act on a state of zero angular momentum, where from
Eq. (21.64),

〈0|
yl+m
+ yl−m

−
√

(l +m)!(l −m)!
= 〈lm|. (22.66)

Therefore,

〈0|

(

r

r · a
)l

2ll!
=

∑

m

√

4π

2l+ 1
Ylm(θ, φ)〈lm|. (22.67)

What happens when we rotate the coordinate system? An infinitesimal coordi-
nate rotation is given in terms of

U = 1 +
i

h̄
δω · J, (22.68)

so because 〈0|U = 〈0|,

〈0|

(

r

r · a
)l

2ll!
U = 〈0|

(

r

r · a
)l

2ll!
, (22.69)

where
a = U−1

aU = a − δω × a. (22.70)
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Thus,

〈0|

(

r

r · (a − δω × a)
)l

2ll!
=

∑

m

√

4π

2l+ 1
Ylm(θ, φ)〈lm|U. (22.71)

Now we make a compensating rotation by replacing

r

r
→

r

r
− δω ×

r

r
. (22.72)

Then the scalar product is unchanged, because we rotate r and a the same way.
On the right side of Eq. (22.71) we have two changes:

〈lm| → 〈lm|

(

1 +
i

h̄
δω · J

)

, (22.73a)

r → r− δω × r, (22.73b)

the latter of which changes θ and φ. In terms of infinitesimal changes,

δ〈lm| = 〈lm|
i

h̄
δω · J, (22.74a)

δYlm(r) = (δr · ∇)Ylm(r) = −(δω × r) · ∇Ylm(r). (22.74b)

Therefore, Eq. (22.67) is invariant under these two changes,

0 =
∑

m

√

4π

2l + 1

[

−(δω × r) · ∇Ylm(θ, φ)〈lm| + Ylm(θ, φ)〈lm|
i

h̄
δω · J

]

,

(22.75)
which implies that

∑

m

(r ×
h̄

i
∇)Ylm(θ, φ)〈lm| =

∑

m

Ylm(θ, φ)〈lm|J. (22.76)

Thus we conclude that

L = r×
h̄

i
∇ (22.77)

represents on functions the action of J on states. This is analogous to the
representation of linear momentum:

1

i

∂

∂q′
〈q′| = 〈q′|p. (22.78)

L, a differential operator, represents, realizes, J.

L has the same commutation relations as J. We see this by computing

LxLy

∑

m

Ylm〈lm| = Lx

∑

m

Ylm〈lm|Jy =
∑

m

Ylm〈lm|JxJy, (22.79)
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and similarly in the other order, so

[Lx, Ly]
∑

m

Ylm〈lm| =
∑

m

Ylm〈lm|[Jx, Jy]

=
∑

m

Ylm〈lm|ih̄Jz = ih̄Lz

∑

m

Ylm〈lm|, (22.80)

so as a statement about differential operators,

[Lx, Ly] = ih̄Lz, or L × L = ih̄L. (22.81)

Next,

Lz

∑

m

Ylm〈lm| =
∑

m

Ylm〈lm|Jz =
∑

m

Ylm〈lm|mh̄, (22.82)

or
LzYlm = mh̄Ylm. (22.83)

That is, Ylm is an eigenfunction of the differential operator Lz, with eigenvalue
mh̄. In the same way we prove

L2Ylm = h̄2l(l + 1)Ylm, (22.84)

that is, Ylm is an eigenfuction of the differential operator L2, with eigenvalue
l(l+ 1)h̄2,

Now recall the lowering operator,

1

h̄
(Jx − iJy)|lm〉 =

√

(l +m)(l −m+ 1)|l,m− 1〉, (22.85)

or the adjoint statement,

〈lm|(Jx + iJy)
1

h̄
= 〈l,m− 1|

√

(l +m)(l −m+ 1). (22.86)

Then
(Lx + iLy)

∑

m

Ylm〈lm| =
∑

m

Ylm〈lm|(Jx + iJy), (22.87)

so from Eq. (22.86)

(Lx + iLy)
∑

m

Ylm〈lm| =
∑

m

Ylmh̄〈l,m− 1|
√

(l +m)(l −m+ 1)

= h̄
∑

m

Yl,m+1〈lm|
√

(l −m)(l +m+ 1), (22.88)

where in the last step we relabelled, or shifted m→ m+ 1. Thus, we conclude

(Lx + iLy)Ylm = h̄
√

(l −m)(l +m+ 1)Yl,m+1. (22.89)

That is, acting to the right, Lx + iLy is just like Jx + iJy:

(Jx + iJy)|lm〉 = h̄
√

(l −m)(l +m+ 1)|l,m+ 1〉. (22.90)
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Similarly, we have the realization of the lowering operator to the right,

(Lx − iLy)Ylm = h̄
√

(l +m)(l −m+ 1)Yl,m−1, (22.91)

analogous to Eq. (22.85). That is, L = r × h̄
i ∇, which indeed is a moment of

momentum, is a orbital angular momentum, due to the motion of the particle.


