
Chapter 21

Rotation Matrices

We have talked at great length last semester and this about unitary trans-
formations. The putting together of successive unitary transformations is of
fundamental importance. We are now going to talk about a general rotation,
described in terms of three Euler angles, as explained in Fig. 21.1 The three Eu-
ler angles (φ, θ, ψ) represent a general rotation of the coordinate system. First,
the original coordinate system is rotated through an angle φ about the z axis;
then, the new coordinate system is rotated through an angle θ about the new
y′ axis; finally, the 2nd coordinate system is rotated through an angle ψ about
the second z′′ axis.

We actually did this last semester for spin 1/2. Geometrically,

σz̄ = σz cos θ + σx sin θ cosφ+ σy sin θ sinφ. (21.1)

The last two terms are

sin θ σx(cosφ+ iσz sinφ) = sin θ σxe
iσzφ = e−iσzφ/2 sin θ σxe

iσzφ/2, (21.2)

since σx anticommutes with σz . Then

σz̄ = e−iσzφ/2[σz cos θ + σx sin θ]eiσzφ/2, (21.3)

where the quantity in brackets is

σz(cos θ + iσy sin θ) = σze
iθσy = e−iθσy/2σze

iθσy/2. (21.4)

In Eq. (21.3) we see the first transformation as a unitary transformation, that
corresponds to a rotation about the z axis through an angle φ. In Eq. (21.4) we
see the second transformation, the rotation about the y axis through an angle θ.
We don’t see the final rotation through the angle ψ here because σz commutes
with itself. All together,

σz̄ = U−1σzU, U = eiθσy/2eiφσz/2. (21.5)

This how we first learned about unitary transformations.
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Figure 21.1: The left figure represents a rotation of the coordinate system about
the z axis through an angle φ. The middle figure represents a subequent rotation
about the y′ axis through an angle θ. The figure on the right shows the final
rotation, about the z′′ axis through and angle ψ. The three rotations together
leads to the final set of coordinate axes, designated by x̄, ȳ, and z̄

This result is very provocatively general. In general, is it true that we can
replace

1

2
σz →

1

h̄
Jz,

1

2
σy → 1

h̄
Jy? (21.6)

Let’s check that this is true:

e−iθJy/h̄Jze
iθJy/h̄ = Jz cos θ + Jx sin θ, (21.7)

and also that
e−iφJz/h̄Jxe

iφJz/h̄ = Jx cosφ+ Jy sinφ. (21.8)

These are not independent statements, because the second can be obtained from
the first by cyclic permuation,

z → x, x→ y, y → z. (21.9)

So let’s just verify Eq. (21.8). If this is true, it must follow from general com-
mutation relations. Consider the derivative with respect to φ of the right-hand
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side of Eq. (21.8):

d

dφ

[

e−iφJz/h̄Jxe
iφJz/h̄

]

= e−iφJz/h̄ i

h̄
[Jx, Jz]e

iφJz/h̄ = e−iφJz/h̄Jye
iφJz/h̄.

(21.10)
Let us denote the quantity differentiated by

e−iφJz/h̄Jxe
iφJz/h̄ = Jx(φ). (21.11)

The initial conditions are at φ = 0:

Jx(0) = Jx,
dJx
dφ

(φ = 0) = Jy, (21.12)

so the solution to the differential equation (21.10) is

Jx(φ) = e−iφJz/h̄Jxe
iφJz/h̄ = Jx cosφ+ Jy sinφ. (21.13)

This verified the desired relation. In exactly the same way

Jy(φ) = e−iφJz/h̄Jye
iφJz/h̄ = Jy cosφ− Jx sinφ. (21.14)

These equations holds for any vector, since all we used was the commutation
relation, for example,

[Vx, Jz] = −ih̄Vy, (21.15)

etc.
Think about the general rotation described in Fig. 21.1. Let U1 be the

unitary operator corresponding to the first rotation. U1 changes states and
operators according to

〈 | = 〈 |U1, X = U−1

1 XU1. (21.16)

Here to describe the rotation about the z axis through the angle φ,

U1 = eiφJz/h̄. (21.17)

The second rotation is about the new y′ axis through an angle θ, where the y′

axis was obtained from the y axis by the first rotation about the z axis. Thus

U2 = U−1

1
U2U1. (21.18)

The transformation is described relative to the previous coordinate system. U1

changes a rotation about the y axis to a rotation about the y′ axis. The net
result of these two rotations is

U1U2 = U1U
−1

1 U2U1 = U2U1, (21.19)

that is, the order of the rotations is reversed! Indeed, for spin 1/2 we just found

U = eiθσy/2eiφσz/2; (21.20)
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these transformations are all defined in the original coordinate system. For the
sequence of three rotations described in Fig. 21.1, we have

U1U2U3, (21.21)

where U2 describes a rotation about the y′ axis, and U3 represents a rotation
about the z′′ axis, which axis is produced by the two previous transformations.
So

U3 = (U1U2)
−1U3(U1U2), (21.22)

and the net transformation is

U1U2U3 = U3(U1U2) = U3U2U1, (21.23)

which is a general result: A sequence of transformations done in coordinate sys-
tems referring to previously transformed coordinate systems equals the transfor-
mation in the opposite order in the original coordinate system. So for a general
rotation

U(φ, θ, ψ) = eiψJz/h̄eiθJy/h̄eiφJz/h̄, (21.24)

where each individual rotation operator refers to the original coordinate system.
In fact, we showed this result last semester, in Assignment 5, problem 4, for spin
1/2:

U = e
i
2
ψσze

i
2
θσye

i
2
φσz . (21.25)

What is the matrix of this? The matrix in the basis where σz is diagonal is
composed of the elements

〈σ′|U |σ′′〉, (21.26)

where the left vector corresponds to the state where σ′
z = σ′ and the right vector

corresponds to the state where σ′
z = σ′′. Immediately it is clear that

〈σ′|U |σ′′〉 = e
i
2
ψσ′〈σ′|e i

2
θσy |σ′′〉e i

2
φσ′′

, (21.27)

because the exponentials on the right and left simply record the values of σz on
the right and left, respectively. Now

e
i
2
θσy = cos

θ

2
+ iσy sin

θ

2
, (21.28)

where the matrix of σy is

σy =

(

0 −i
i 0

)

. (21.29)

Thus the rotation matrix for spin 1/2 is

〈σ′|U(φ, θ, ψ)|σ′′〉 =

(

eiψ/2 cos θ
2
eiφ/2 eiψ/2 sin θ

2
e−iφ/2

−e−iψ/2 sin θ
2
eiφ/2 e−iψ/2 cos θ

2
e−iφ/2

)

. (21.30)
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This matrix gives probabilites. Recalling that 〈 | = 〈 |U , we say that the state
in which σ′

z = σ′ is transformed into the analogous state in which σ′
z̄ = σ′ (the

same value) is
〈σ′
z |U = 〈σ′

z̄ |, (21.31)

or
〈σ′
z̄ | = 〈σ′

z |U =
∑

σ′′

z

〈σ′
z |U |σ′′

z 〉〈σ′′
z |, (21.32)

where we see the appearance of the matrix elements we just computed. Explic-
itly,

〈+, z̄| = e
i
2
ψ

(

cos
θ

2
e

i
2
φ〈+, z| + sin

θ

2
e−

i
2
φ〈−, z|

)

, (21.33a)

〈−, z̄| = e−
i
2
ψ

(

− sin
θ

2
e

i
2
φ〈+, z| + cos

θ

2
e−

i
2
φ〈−, z|

)

. (21.33b)

In the first line here, we see just the probability amplitudes in Eq. (20.45). We
want to do this for any angular momentum.

Remember how any angular momentum can be constructed in terms of spin
1/2, Eq. (15.59):

1

h̄
J = y†

1

2
σy, (21.34)

where y is a two-component operator,

y =

(

y+
y−

)

. (21.35)

Explicitly,
1

h̄
J =

∑

σ′,σ′′

y†σ′〈σ′|1
2
σ|σ′′〉yσ′′ . (21.36)

Now, how do y, y† respond to rotations of the coordinate system? Consider an
infinitesimal rotation,

U = 1 +
i

h̄
δω · J. (21.37)

Under a unitary transformation,

X̄ = U−1XU, (21.38)

amd if the transformation is infinitesimal, U = 1 + iG/h̄,

X̄ = X − δX, δX =
1

ih̄
[X,G]. (21.39)

Here

δy =
1

ih̄
[y, δω · J] =

1

i
[y,

∑

σ′,σ′′

y†σ′〈σ′|1
2
σ · δω|σ′′〉yσ′′ ]. (21.40)
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Remember that the matrix element appearing here is a number, not an operator.
Now recall the operator properties (15.49a)–(15.49c) of the oscillator variables
y, y†.

[yσ′ , yσ′′ ] = 0, or [y+, y−] = 0, (21.41)

which says that y+ and y− are independent variables. On the other hand

[yσ′ , y
†
σ′′ ] = δσ′,σ′′ , (21.42)

since

[y+, y
†
+] = 1, [y−, y

†
−] = 1. (21.43)

So

δyσ′ =
1

i

∑

σ′′

〈σ′|1
2
σ · δω|σ′′〉yσ′′ , (21.44)

which says that the ys change into linear combinations of themselves. So if we
write ȳ = y − δy,

ȳσ′ =
∑

σ′′

〈σ′|1 +
i

2
σ · δω|σ′′〉yσ′′ , (21.45)

where for spin 1/2

U = 1 +
i

2
δω · σ; (21.46)

this transformation is true for finite transformation,

ȳσ′ =
∑

σ′′

〈σ′|U |σ′′〉yσ′′ . (21.47)

Here appears the known rotation matrix (21.30) for spim 1/2. This will tell us
how an arbitary state transforms under a rotation.

The operators y transform the same as spin-1/2 states, as shown in Eqs. (21.33a)
and (21.33b). [See Eq. (21.32).] Explicitly,

ȳ+ = e
i
2
ψ

(

cos
θ

2
e

i
2
φy+ + sin

θ

2
e−

i
2
φy−

)

, (21.48a)

ȳ− = e−
i
2
ψ

(

− sin
θ

2
e

i
2
φy+ + cos

θ

2
e−

i
2
φy−

)

. (21.48b)

The adjoint of this is

ȳ†+ = e−
i
2
ψ

(

cos
θ

2
e−

i
2
φy†+ + sin

θ

2
e

i
2
φy†−

)

, (21.49a)

ȳ†− = e
i
2
ψ

(

− sin
θ

2
e−

i
2
φy†+ + cos

θ

2
e

i
2
φy†−

)

. (21.49b)

Under a unitary transformation, all algebraic properties are preserved. Now
recall the commutation relations (21.41) and (21.42) for the ys and y†s, which
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also must be satisfied by the ȳs and ȳ†s. Let’s see this explicitly,

[ȳ+, ȳ
†
+] = cos2

θ

2
+ sin2 θ

2
= 1, (21.50a)

[ȳ−, ȳ
†
−] = sin2 θ

2
+ cos2

θ

2
= 1, (21.50b)

[ȳ+, ȳ
†
−] = eiψ

(

− cos
θ

2
sin

θ

2
+ sin

θ

2
cos

θ

2

)

= 0. (21.50c)

Remember, for a single oscillator variable, y, with [y, y†] = 1, we have
[Eq. (15.1)]

|n〉 =
(y†)n√
n!

|0〉. (21.51)

For angular momentum, we have two of these sets of ys, just as we saw in
Eqs. (15.37a) and (15.37b):

|jm〉 = |n+, n−〉, n+ = j +m, n− = j −m. (21.52)

We are putting together n spins of 1/2,

n = n+ + n−, (21.53)

where n+ have spin up, n− have spin down. The magnetic quantum number is

m =
1

2
(n+ − n−). (21.54)

What is the largest m you can get? It is j, where

j =
1

2
n =

1

2
(n+ + n−). (21.55)

This provides an interpretation of the |n+, n−〉 states in terms of two oscillators,

|jm〉 = |n+, n−〉 =
(y†+)n+

√

n+!

(y†−)n−

√

n+!
|0, 0〉, (21.56)

where the first operator creates n+ up spins, the second n− down spins. In
terms of j and m,

|jm〉 =
(y†+)j+m(y†−)j−m

√

(j +m)!(j −m)!
|0〉, (21.57)

where
|0〉 = |n+ = 0, n− = 0〉 = |j = 0,m = 0〉. (21.58)

Let’s illustrate this for spin 1/2:

|1/2,+1/2〉 = y†+|0〉, |1/2,−1/2〉 = y†−|0〉, (21.59)
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where the y†+ operator creates one up spin, and y†− creates one down spin. Take
the adjoint of this, in simplified notation:

〈σ′
z | = 〈0|yσ′ ; (21.60)

yσ′ acting to the left creates a spin, up or down, depending on whether σ′ = ±1.
Now it is obvious why yσ′ transforms the same way as 〈σ′

z |:

〈σ′
z̄ | = 〈σ′

z |U = 〈0|yσ′U = 〈0|UU−1yσ′U = 〈0|Uȳσ′ = 〈0|ȳσ′ . (21.61)

Here σ′
z̄ = σ′

z = σ′, since the two spin states have analogous properties in
the rotated coordinate systems, related by Eulerian angles. Further, ȳσ′ =
U−1yσ′U , and

〈0|U = 〈0|eiψJz/h̄eiθJy/h̄eiφJz/h̄ = 〈0|, (21.62)

because the “vacuum” state is the unique state in which we can specify Jx, Jy,
Jz simultaneously,

〈0|Jz = 0, 〈0|(Jx ± iJy) = 〈0|J± = 〈0|h̄y†±y∓ = 0 ⇒ 〈0|Jx = 〈0|Jy = 0,
(21.63)

which recalls the construction (15.48a) and (15.48b). So we conclude that the
new spin-1/2 states are made from the new ys in the same way as the old
spin-1/2 states are made from the old ys.

Now we want to do this in general, starting from

〈jm| = 〈0| (y+)j+m(y−)j−m
√

(j +m)!(j −m)!
. (21.64)

What are these states in a different coordinate system?

〈jm| = 〈jm|U = 〈jm, z̄|, (21.65)

which relates the states referring to the z axis to those referring to the z̄ axis.
Because 〈0|U = 〈0|, we have

〈0| (y+)j+m(y−)j−m
√

(j +m)!(j −m)!
U = 〈0|U−1 (y+)j+m(y−)j−m

√

(j +m)!(j −m)!
U, (21.66)

so

〈jm| = 〈0| (ȳ+)j+m(ȳ−)j−m
√

(j +m)!(j −m)!
. (21.67)

Again, the new states are made from the new ys in just the same manner as the
old states were made from the old ys. On the other hand,

〈jm, z̄| = 〈jm|U = 〈jm|U
∑

j′m′

|j′m′〉〈j′m′|, (21.68)

where we have inserted a complete set of angular momentum states. But it is
intuitively obvious that U does not change j:

〈jm|U |j′m′〉 = 0 if j′ 6= j, (21.69)
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because this matrix element, apart from a phase, is

〈jm|eiθJy/h̄|j′m′〉, (21.70)

and
[J2,J] = 0, (21.71)

so J
2 commutes with any function of J, in particular

[J2, U ] = 0. (21.72)

If we take the matrix element of this, it reads

0 = 〈jm|U(J)J2 − J
2U(J)|j′m′〉 = h̄2[j′(j′ + 1) − j(j + 1)]〈jm|U(J)|j′m′〉,

(21.73)
which implies that the matrix element vanishes if j′ 6= j. So we can write

〈jm, z̄| =
∑

m′

〈jm|U |jm′〉〈jm′|, (21.74)

which is the exact counterpart to what we had in Eq. (21.32) for spin 1/2:

〈σ′
z̄ | =

∑

σ′′

〈σ′|U |σ′′〉〈σ′′
z |. (21.75)

So our problem is to work out the 〈jm|U |jm′〉, a (2j + 1) × (2j + 1) matrix.
Write out explicitly, using Eqs. (21.48a) and (21.48b),

〈jm, z̄| = 〈0| (ȳ+)j+m(ȳ−)j−m
√

(j +m)!(j −m)!

= 〈0|
eimψ

(

cos θ
2
ei

φ

2 y+ + sin θ
2
e−i

φ

2 y−

)j+m (

− sin θ
2
ei

φ

2 y+ + cos θ
2
e−i

φ

2 y−

)j−m

√

(j +m)!(j −m)!
.

(21.76)

We have here all possible combinations of powers of y+, y−, with total power
2j. To pick off the desired matrix element, we isolate the coefficient of

〈jm′| = 〈0| (y+)j+m
′

(y−)j−m
′

√

(j +m′)!(j −m′)!
. (21.77)

The first factor involving y± in Eq. (21.76) creates + spin along the z̄ direction,
the second factor creates − spin along the z̄ direction. The desired matrix
element is isolated as

〈jm, z̄| = 〈0|
∑

m′

〈jm|U |jm′〉 (y+)j+m
′

(y−)j−m
′

√

(j +m′)!(j −m′)!
, (21.78)

where the operator factor creates the original state 〈jm′|.
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To determine the matrix element, we have an algebraic problem. First, we
note that the dependence on ψ and φ is very simple,

〈jm|eiψJz/h̄eiθJy/h̄eiφjy/h̄|jm〉 = eimψ〈jm|eiθJy/h̄|jm′〉eim′φ, (21.79)

so in Eq. (21.78) we see eimψ as an overall factor, while eiφ/2 is associated with
y+, e−iφ/2 is associated with y−; in fact,

eim
′φ(y+)j+m

′

(y−)j−m
′

=
(

eiφ/2y+

)j+m (

e−iφ/2y−

)j−m
. (21.80)

So, we can redefine

ei
φ

2 y+ → y+, e−i
φ

2 y− → y−, (21.81)

which is just another rotation about the z axis. Now we have, with

U(θ) = eiθJy/h̄, (21.82)

the operator appearing in Eq. (21.76) becoming

(cos θ
2
y+ + sin θ

2
y−)j+m(− sin θ

2
y+ + cos θ

2
y−)j−m

√

(j +m)!(j −m)!

=

j
∑

m′=−j
〈jm|U(θ)|jm′〉 yj+m

′

+ yj−m
′

−
√

(j +m′)!(j −m′)!
. (21.83)

The fact that the y± are operators is irrelevant to picking off the matrix element.
Let’s do an example, for j = 1. For m = 1, the operator appearing on the

left here is

(cos θ
2
y+ + sin θ

2
y−)2√

2
=

(

y2
+√
2

)

cos2
θ

2
+ (y+y−)

1√
2

sin θ +

(

y2
−√
2

)

sin2 θ

2
,

(21.84)
where the operators in parentheses on the right-side of this equality are those
required to create the m = 1, 0,−1 state in the original coordinate system. For
m = 0:

(

cos
θ

2
y+ + sin

θ

2
y−

) (

− sin
θ

2
y+ + cos

θ

2
y−

)

= −
(

y2
+√
2

)

1√
2

sin θ + (y+y−) cos θ +

(

y2
−√
2

)

1√
2

sin θ, (21.85)

and, finally, for m = −1,

(− sin θ
2
y+ + cos θ

2
y−)2√

2
=

(

y2
+√
2

)

sin2 θ

2
− (y+y−)

1√
2

sin θ +

(

y2
−√
2

)

cos2
θ

2
.

(21.86)
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Thus we have compute all the matrix elements for j = 1:

〈1m|U(θ)|1m′〉 =







cos2 θ
2

1√
2

sin θ sin2 θ
2

− 1√
2

sin θ cos θ 1√
2

sin θ

sin2 θ
2

− 1√
2

sin θ cos2 θ
2






. (21.87)

This should be familiar, since

〈jm|U(θ)|jm′〉 = 〈jm, z̄|jm′, z〉, (21.88)

which is just the transformation function between eigenstates in the two co-
ordinate systems. The squares of these matrix elements are the well-known
probabilities, given for example in Problem 2, Assignment 3, last semester. We
are learning the algebraic signs that guarantee that the U matrix is unitary.
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