
Chapter 20

Addition of Angular

Momenta

Let’s turn directly to the question of how we combine angular momentum.
Consider two atoms, labelled 1 and 2, which are separated, so we can talk
about measurements of their properties separately. Under a rotation, how does
J1 change? By

δJ1 =
1

ih̄
[J1, δω · J1] = δω × J1, (20.1)

which implies
J1 × J1 = ih̄J1. (20.2)

Atom 2 is outside the framework of this measurement. For example, the rotation
of the coordinate system might be achieved physically by rotating magnets,
which will not influence the isolated atom 2, so

δJ2 =
1

ih̄
[J2, δω · J1] = 0. (20.3)

Thus, what we mean by independent augular momenta is

[J1k, J2l] = 0. (20.4)

The angular momentum of these two atoms do not influence each other.
Similarly, we can measure atom 2 and let 1 be outside the realm of the

measurement. So a rotation of the coordinate system describing atom 2 is
described by

δJ2 =
1

ih̄
[J2, δω · J2] = δω × J2, (20.5)

which implies
J2 × J2 = ih̄J2. (20.6)

Now rotation of the coordinate system describing atom 2 has no effect on 1:

δJ1 =
1

ih̄
[J1, δω · J2] = 0, (20.7)
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which again implies Eq. (20.4).
Now we think of 1 and 2 as being the whole system, described by a common

coordinate system. Physically this could be realized by putting both atoms in
the same magnetic field. Now the infinitesimal generator of rotations is

U = 1 +
i

h̄
G. (20.8)

For system 1 only, G1 = δω · J1, and for system 2 only G2 = δω · J2. We put
both systems together by multiplying the unitary transformations, or adding
the generators:

U = U1U2 = 1 +
i

h̄
(G1 +G2). (20.9)

The generator of the common rotation of both atoms is

G = G1 +G2 = δω · (J1 + J2). (20.10)

The angular momentum of the system as a whole is the sum of the angular
momenta,

J = J1 + J2. (20.11)

The change in the angular momenta induced by the rotation is

δJ1 =
1

ih̄
[J1, δω · J] = δω × J1, (20.12a)

δJ2 =
1

ih̄
[J2, δω · J] = δω × J2, (20.12b)

where we recognize that J1 rotates J1 and J2 rotates J2. Altogether then,

δJ =
1

ih̄
[J, δω · J] = δω × J, (20.13)

or
J × J = ih̄J, (20.14)

where nothing but the total angular momentum appears.
Let the two systems both be angular momentum 1/2,

1

h̄
J =

1

2
σ1 +

1

2
σ2; (20.15)

this could be the spin ot the electron plus the spin of the proton in the hydrogen
atom. These are independent:

[σ1k, σ2l] = 0. (20.16)

Individually,
σ1 × σ1 = 2iσ1, σ2 × σ2 = 2iσ2. (20.17)

In particular,
1

h̄
Jz =

1

2
σ1z +

1

2
σ2z , (20.18)
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so the eigenvalues satisfy

1

h̄
(Jz)

′ = m1 +m2 =







1 (1/2, 1/2)
0 (1/2,−1/2) or (−1/2, 1/2)
−1 (−1/2,−1/2)

(20.19)

since there are four possibilities of (m1,m2). In general, the magnetic quantum
numbers add:

m = m1 +m2. (20.20)

What about the total angular momentum? Recall the possible values of m
are

m = j, j − 1, j − 2, . . . ,−j, (20.21)

2j + 1 possibilities in all. Thus we are forced to conclude here that the (m1 =
1/2,m2 = 1/2) state must also be the j = 1 m = 1 state, which we write in
terms of state vectors as

|j = 1,m = 1〉 = |m1 = 1/2,m2 = 1/2〉 = |+1

2
〉1|+

1

2
〉2 = |+1

2
〉2|+

1

2
〉1. (20.22)

This means, we put system 2 in state | + 1/2〉2 and system 1 in state | +
1/2〉1. We can write the product of vectors in either order since the systems are
independent.

Now recall the machinery of angular momenta, in particular, the lowering
operator,

1

h̄
J−|jm〉 =

√

(j +m)(j −m+ 1)|jm− 1〉, (20.23)

or, in this case,

1

h̄
J−|j = 1,m = 1〉 =

√
2|j = 1,m = 0〉. (20.24)

But on the other hand

1

h̄
J− =

1

2
(σx − iσy)1 +

1

2
(σx − iσy)2, (20.25)

where the spin operators for system 1 act only on the state 1, and those for 2
act only on state 2. In either case, from Eq. (20.23),

1

2
(σx − iσy)| + 1/2〉 = | − 1/2〉, (20.26)

so we conclude

√
2|j = 1,m = 0〉 = | − 1/2〉1|1/2〉2 + |1/2〉1| − 1/2〉2 = | − 1

2
,
1

2
〉 + |1

2
,−1

2
〉,

(20.27)
where in the last we adopted the convention that the first spin projection refers
to system 1, the second to system 2.
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As we saw in Eq. (20.19) there are two ways of making m = 0, but a unique
combination corresponds to the j = 1, m = 0 state,

|j = 1,m = 0〉 =
1√
2

(

| − 1

2
,+

1

2
〉 + | + 1

2
,−1

2
〉
)

. (20.28)

Now since there is only one way to make m = −1 we would anticipate

|j = 1,m = −1〉 = | − 1

2
,−1

2
〉, (20.29)

but we can verify this directly, by applying the lowering operator again. On the
one hand,

J−|j = 1,m = 0〉 =
√

2|j = 1,m = −1〉, (20.30)

but on the other hand

[

1

2
(σx − iσy)1 +

1

2
(σx − iσy)2

]

1√
2

(

| − 1

2
,
1

2
〉 + |1

2
,−1

2
〉
)

=
1√
2

(

| − 1

2
,−1

2
〉 + | − 1

2
,−1

2
〉
)

=
√

2| − 1

2
,−1

2
〉, (20.31)

because, for example,

(σx − iσy)1| −
1

2
,
1

2
〉 = 0,

1

2
(σx − iσy)1|

1

2
,−1

2
〉 = | − 1

2
,−1

2
〉. (20.32)

Thus Eq. (20.29) is verified.

There is one more state, the remaining m = 0 state. Since the j = 0, m = 0
state must be orthogonal to the j = 1, m = 0 state, we must have, up to a
phase,

|j = 0,m = 0〉 =
1√
2

(

| − 1

2
,
1

2
〉 − |1

2
,−1

2
〉
)

. (20.33)

The
√

2 is to guarantee that this is a unit vector,

〈j = 0,m = 0|j = 0,m = 0〉 =
1

2

[

〈−1

2
,
1

2
| − 〈1

2
,−1

2
|
] [

| − 1

2
,
1

2
〉 − |1

2
,−1

2
〉
]

=
1

2
[1 + 1] = 1. (20.34)

Thus the four states of two independent spin-1/2 systems correspond to the
three states of j = 1 plus the single state of j = 0.

Let us henceforth simplify the notation, as we did last semester. For the
spin-1/2 systems, only the signs of mi matter, so we will denote

| ± 1

2
,±1

2
〉 = |±,±〉. (20.35)
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Thus the three j = 1 states constructed from two spin 1/2’s are

|1, 1〉 = |+,+〉, (20.36a)

|1, 0〉 =
1√
2

[|−,+〉 + |+,−〉] , (20.36b)

|1,−1〉 = |−,−〉. (20.36c)

Note that once one phase is specified, the others are determined by the lowering
operator. Note that all three of these states are symmetrical under 1 ↔ 2. The
one remaining state,

|0, 0〉 =
1√
2

[|−,+〉 − |+,−〉] , (20.37)

which is a unit vector, orthogonal to the other states, is antisymmetrical under
the interchange 1 ↔ 2.

As an example of overkill, let’s consider what happens when we apply J− to
the |0, 0〉 state:

1

h̄
J−|0, 0〉 =

[

1

2
(σx − iσy)1 +

1

2
(σx − iσy)2

]

1√
2

[| − +〉 − | + −〉]

=
1√
2

[−| − −〉 + | − −〉] = 0, (20.38)

which indeed demonstrates that |0, 0〉 is the j = 0 state.
Recall that last semester, we considered building up spin 1 from two spin

1/2’s, but then we did not have the machinery of quantum mechanics. Consider
two quantization directions, z and z′, which make an angle θ with respect to
each other, so we can consider two situations:

1. We can construct the state j = 1, m = 1 by adding m1 = 1/2, m2 = 1/2,
where the spin projections refer to the z axis:

J ′
z = 1 : |11z〉 = | + z,+z〉. (20.39)

2. We can construct the state j = 1, m = 1 by adding m1 = 1/2, m2 = 1/2,
where the spin projections refer to the z′ axis:

J ′
z′ = 1 : |11z′〉 = | + z′,+z′〉. (20.40)

Since the probability of finding m1 = 1/2 in the z′ direction given that the
state was initially prepared in the state m1 = 1/2 in the z direction is cos2 θ/2,
the probability of finding m = 1 in the z direction given that m = 1 in the z′

direction is
cos2 θ/2 cos2 θ/2 = cos4 θ/2. (20.41)

[Recall Eq. (4.40), for example.] This is in fact correct. On the other hand, we
might anticipate that the probability of finding m = 0 in z given that the state
was prepared with m = 1 in z′ is

cos2 θ/2 sin2 θ/2 =
1

4
sin2 θ, (20.42)



184 Version of October 29, 2012CHAPTER 20. ADDITION OF ANGULAR MOMENTA

which is not correct; it should be a factor of 2 larger, as we saw in Problem
3-1 from last semester. Now we see that the vectors in quantum mechanics are
combined in a very definite way, which supplies the missing factor of 2. The
probability is the square of a probability amplitude,

p(+1z,+1z′) = |〈+1z|+ 1z′〉|2, (20.43)

so we have interference between waves. It helps to think of

| + +〉 = |+〉1|+〉2, (20.44)

where for example |+〉1 corresponds to putting the first system into the state
m1 = +1/2. The states labeled 1 and 2 are independent of each other. Recall
the wavefunctions we computed, for example, in Eq. (7.26),

ψ+z′(+) = 〈+z| + z′〉 == e−i φ

2 cos
θ

2
, ψ+z′(−) = 〈−z| + z′〉 = ei φ

2 sin
θ

2
.

(20.45)
Therefore, up to a phase,

〈+1z|+1z′〉 = 〈+1/2z|+1/2z′〉1〈+1/2z|+1/2z′〉2 = cos θ/2 cos θ/2 = cos2 θ/2,
(20.46)

so
p(+1z,+1z′) = cos4 θ/2, (20.47)

as anticipated in the simple picture. The real question is what is

p(0z,+1z′) = |〈0z|+ 1z′〉|2. (20.48)

So we have to work out the probability amplitude

〈0z|+ 1z′〉 =
1√
2

[〈−z|1〈+z|2 + 〈+z|1〈−z|2] | + z′〉1| + z′〉2

=
1√
2

[〈−z| + z′〉1〈+z|+ z′〉2 + 〈+z| + z′〉1〈−z|+ z′〉2]

=
1√
2

[sin θ/2 cos θ/2 + cos θ/2 sin θ/2] =
√

2 cos θ/2 sin θ/2.

(20.49)

Here we ignored a common phase which does not contribute to the probability.
The two terms appearing here are identical—they interfere constructively. Note
that the 1,2 labels have no meaning on the individual amplitudes, 〈−z|+ z′〉 is
the same whether it refers to 1 or 2. Thus the probability is, correctly,

p(0z,+1z′) = 2 cos2 θ/2 sin2 θ/2. (20.50)

If we were to calculate 〈0z, j = 0| + 1z′, j = 1〉 in the same way we would get
zero—quantum interference is decisive:

〈00z|11z′〉 =
1√
2

[〈−z|1〈+z|2 − 〈+z|1〈−z|2] | + z′〉1| + z′〉2
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m Number of states j (m1,m2)
3 1 3 (1,2)
2 2 3,2 (1, 1), (0, 2)
1 3 3, 2, 1 (1, 0), (0, 1), (−1, 2)
0 3 3, 2, 1 (1,−1), (0, 0), (−1, 1)
−1 3 3, 2, 1 (1,−2), (0,−1), (−1, 0)
−2 2 3, 2 (0,−2), (−1,−1)
−3 1 3 (−1,−2)

Table 20.1: The 15 states that can be constructed by adding spin 1 to spin 2.
Shown are the total magnetic quantum numbers, the number of states, the total
angular momentum quantum numbers, and the constituent magnetic quantum
numbers.

=
1√
2

[〈−z| + z′〉1〈+z|+ z′〉2 − 〈+z| + z′〉1〈−z|+ z′〉2]

=
1√
2

[sin θ/2 cos θ/2 − cos θ/2 sin θ/2] = 0. (20.51)

What we have just done is combine four states, those of two independent
spin 1/2 systems, to get 4 states, three of spin j = 1 and one of spin j = 0. How
does this generalize? As an example, let’s combine two angular momenta

J = J1 + J2, (20.52)

for j1 = 1 and j2 = 2. Table 20.1 shows how these can be combined. The largest
value of m is 3, so the largest j value is 3. There are 7 states with

j = 3 : m = 3, 2, 1, 0,−1,−2,−3. (20.53)

There is a second m = 2 state, so there must also be a j = 2 set of states, which
has 5 members:

j = 2 : m = 2, 1, 0,−1,−2. (20.54)

There is still a remaining m = 1 state. so there must be a set of j = 1 states,
with 3 members,

j = 1 : m = 1, 0,−1. (20.55)

This accounts for all the states,

(2j1 + 1)(2j2 + 1) = 2 × 5 = 15 =

3
∑

j=1

(2j + 1) = 7 + 5 + 3. (20.56)

Adding angular momenta 1 and 2 give states with angular momenta 1, 2, and
3.

How does it go in general? Consider arbitrary j1 and j2. For definiteness,
let’s assume j1 ≤ j2. The pattern is shown in Table 20.2. So, in general, the
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m Number of states j (m1,m2)
j1 + j2 1 j1 + j2 (j1, j2)

j1 + j2 − 1 2 j1 + j2, j1 + j2 − 1 (j1, j2 − 1), (j1, j2 − 1)
. . .

j2 − j1 2j1 + 1 j1 + j2, j1 + j2 − 1, . . . j2 − j1 (j1, j2 − 2j1), . . . , (−j1, j2)
. . .

−j1 − j2 + 1 2 j1 + j2, j1 + j2 − 1 (−j1,−j2 + 1), (−j1 + 1,−j2)
−j1 − j2 1 j1 + j2 (−j1,−j2)

Table 20.2: The (2j1 +1)(2j2 +1) states that can be constructed by adding spin
j1 to spin j2. (We assume j2 ≥ j1.) Shown are the total magnetic quantum
numbers, the number of states, the total angular momentum quantum numbers,
and the constituent magnetic quantum numbers.

possible values of j are

j = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|. (20.57)

The different possible angular momenta differ by unit steps, although the total
angular momentum can be an integer or an integer plus 1/2. Check the counting:
The number of states is

(2j1 + 1)(2j2 + 1) =

j1+j2
∑

j=|j1−j2|

(2j + 1). (20.58)

Since this is a sum of a linear function of j it is equal to the number of terms
times the average term. Suppose again j2 ≥ j1. Then the number of terms is
2j1 + 1, and the average term is 2 × 1

2 (j1 + j2 + j2 − j1) + 1 = 2j2 + 1, which
verifies the summation.

We can derive this result more elegantly. Recall in Chapter 4, Sec. 4.3, last
semester, we proved

j
∑

m=−j

eimφ =
sin(j + 1/2)φ

sinφ/2
. (20.59)

A direct proof is

j
∑

m=−j

eimφ = e−ijφ

2j
∑

j=0

eimφ =
e−ijφ

1 − eiφ

(

1 − ei(2j+1)φ
)

=
e−i(j+1/2)φ − ei(j+1/2)φ

e−iφ/2 − eiφ/2
=

sin(j + 1/2)φ

sinφ/2
. (20.60)

Now if we multiply two such summations together, for spin j1 and j2, we have




j1
∑

m1=−j1

eim1φ









j2
∑

m2=−j2

eim2φ



 =
sin(j1 + 1/2)φ

sinφ/2

sin(j2 + 1/2)φ

sinφ/2
. (20.61)
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Now the left side of this equation can be written as
∑

m1m2
ei(m1+m2)φ, since

m = m1 +m2. Using

sinα sinβ =
1

2
[cos(α− β) − cos(α+ β)], (20.62)

the right side of Eq. (20.61) is

cos(j1 − j2)φ− cos(j1 + j2 + 1)φ

2 sin2 φ/2
. (20.63)

Now

j+
∑

j=j−

sin(j + 1/2)φ = Im





j+
∑

j=0

ei(j+1/2)φ −
j−−1
∑

j=0

ei(j+1/2)φ





= Im
eiφ/2

1 − eiφ

[(

1 − ei(j++1)φ
)

−
(

1 − eij−φ
)

]

= Im
eij−φ − ei(j++1)φ

−2i sinφ/2

=
cos j−φ− cos(j+ + 1)φ

2 sinφ/2
. (20.64)

Thus we conclude from Eqs. (20.59) and (20.63) that

∑

m1m2

eimφ =

j1+j2
∑

j=|j1−j2|

j
∑

m=−j

eimφ. (20.65)

That is, the states with j1,m1, j2,m2, with

−j1 ≤ m1 ≤ j1, −j2 ≤ m2 ≤ j2, (20.66)

can be equally well classified by j and m, where m = m1 +m2 and −j ≤ m ≤ j
where

|j1 − j2| ≤ j ≤ j1 + j2. (20.67)

Putting φ = 0 in Eq. (20.65) gives the sum (20.58) again:

(2j1 + 1)(2j2 + 1) =

j1+j2
∑

j=|j1−j2|

(2j + 1). (20.68)


