
Chapter 19

Hydrogen Atom I

What is Hint? That depends on the physical system and the accuracy with
which it is described. A natural starting point is the form

Hint =
p2

2µ
+ V, (19.1)

which describes a two-particle system with reduced mass

µ =
mM

m+M
≈ m, if m≪M. (19.2)

What is V ? It seems reasonable to adopt the known electrostatic potential
between electric charges. Does this continue to apply in the atomic realm?
Only experiment can answer. In the hydrogen atom, H, there is an electron, of
charge −e, and a proton of charge +e. The electrostatic potential is

e(−e)
r

= −e
2

r
. (19.3a)

For ionized helium, He+, the potential is

2e(−e)
r

= −2e2

r
, (19.3b)

and for doubly ionized lithium, Li++, we have

3e(−e)
r

= −3e2

r
. (19.3c)

In general, for a single-electron atoms,

V = −Ze
2

r
, (19.3d)

where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydro-
genic atom

H =
p2

2µ
− Ze2

r
. (19.4)
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Here, we ignore the spin of the electron and the proton. The equations of motion
for the relative position and momentum, which are conjugate variables,

[r,p] = ih̄1, (19.5)

are

dr

dt
=

1

ih̄
[r, H ] =

∂H

∂p
=

p

µ
, (19.6a)

dp

dt
=

1

ih̄
[p, H ] = −∂H

∂r
= −Ze

2r

r3
. (19.6b)

Is angular momentum conserved? (It must be, since H is a spin-independent
scalar.)

dL

dt
=

d

dt
(r × p) =

p

µ
× p− r × r

r3
Ze2 = 0. (19.7)

Is there anything else, besides H itself, of course, that is conserved? An affirma-
tive suggestion comes from the known dynamic situation with the Newtonian
potential,

−Ze
2

r
→ −GmM

r
, (19.8)

describing a planet about the sun, for example. It is familiar that the orbit is
an ellipse which holds steady in space. This fact is unique to the 1/r potential,
to the inverse square law of force. The clue to finding what is the associated
conserved quaity is to consider d

dt
r

r . In the following, we will ignore the non-
commutativity of operators, and only state the necessary modifications at the
end:

d

dt

r

r
=

v

r
− r

r2
d

dt
r, (19.9)

where
d

dt
r =

dr

dt
· ∂r
∂r

= v · r

r
, (19.10)

so

d

dt

r

r
=

v

r
− r(r · v)

r3
= −r× (r × v)

r3

= − r

r3
× L

µ
=

1

Ze2
d

dt
p× L

µ
. (19.11)

If we define the axial vector A by

A =
r

r
− 1

µZe2
p× L, (19.12)

we see that A is constant,
d

dt
A = 0. (19.13)
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r cos θ + d

Figure 19.1: Consider a point a distance d from a fixed line, called the directrix.
Let r and θ be polar coordinates from the point as origin, with the angle mea-
sured from the normal to the directrix. The ellipse is the locus of points which
have a fixed ratio e between the distance r from the point and the distance
r cos θ + d from the directrix.

Observe that

A · L =
1

r
r · L − 1

µZe2
p× L · L = 0, (19.14)

because both terms vanish, if we ignore noncommutativity. Leaving the symbols
unchanged, but thinking of astronomy, we recognize the elliptical orbit:

r ·A = r − 1

µZe2
r · p× L = r − L2

µZe2
= re cos θ, (19.15)

where e = |A|, and θ is the angle between A and r, so

r =
L2/µZe2

1 − e cos θ
. (19.16)

which is the polar equation of an ellipse, if e < 1, with eccentricity e. [The
definition of an ellipse such that the sum of the distances from the two foci is
constant,

r1 + r2 = constant, (19.17)

is more familiar, but an alternate definition is the locus of points that make a
constant ratio e between the radial distance, and the horizontal distance from
a fixed line, the directrix,

r = e(r cos θ + d), r =
ed

1 − e cos θ
. (19.18)

See Fig. 19.1.]
Back to quantum mechanics. All that is needed is to make A Hermitian by

symmetric multiplication:

p× L → 1

2
(p × L − L × p). (19.19)



170 Version of October 21, 2012 CHAPTER 19. HYDROGEN ATOM I

For example, the z component of this is

1

2
(pxLy − pyLx −Lxpy +Lypx) =

1

2
(pxLy +Lypx)− 1

2
(pyLx +Lxpy). (19.20)

Recall that if A and B are two Hermitian operators, the symmetric product is
Hermitian:

1

2
(AB +BA)† =

1

2
(BA+AB). (19.21)

The measure of non-commutativity here is

(p× L + L × p)z = pxLy − pyLx + LxPy − Lypx = [px, Ly] − [py, Lx] = 2ih̄pz,
(19.22)

or in general,
p× L + L × p = 2ih̄p. (19.23)

Therefore the Hermitian combination is

1

2
(p × L − L × p) = p× L− ih̄p = −L× p + ih̄p. (19.24)

It is still true in quantum mechanics that L and A are orthogonal,

A · L =
1

r
r · L− 1

µZe2
(p × L − ih̄p) · L = 0 − 1

µZe2
(p · L × L − ih̄p · L) = 0.

(19.25)
So,

A · L = L ·A = 0. (19.26)

Since there are 6 variables, r,p, and 6 constants L,A, the constant H can-
not be independent of L and A. Initially, ignoring the non-commutativity, we
observe

A2 = 1 − 2

µZe2
1

r
r · p × L +

1

(µZe2)2
(p × L) · (p× L). (19.27)

The triple scalar product here is actually L2, and the square of p × L is just
p2L2 − (p · L)2 = p2L2. Thus,

A2 = 1 +
2

µZ2e4

(

p2

2µ
− Ze2

r

)

L2 = 1 +
2

µZ2e4
HL2, (19.28)

or solving for H ,

H = −µZ
2e4

2

1 −A2

L2
. (19.29)

As an aside, note for Bohr circular orbits, where A = 0 and L = nh̄,

H = −µZ
2e4

2

1

n2h̄2 . (19.30)

This looks right, except for the question about why n = 0 is excluded.
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The necessary quantum mechanical modification is indicated by the (p × L)2

calculation. The latter should be

[

1

2
(p × L − L × p)

]2

= (−L × p + ih̄p) · (p × L − ih̄p)

= −(L × p) · (p × L) + ih̄L × p · p + ih̄p · p × L + h̄2p2

= p2(L2 + h̄2), (19.31)

because

−(L × p) · (p × L) = −L · p × (p × L) = −L·[p(p · L)−p2L] = p2L2, (19.32)

since p2 is a scalar, and hence commutes with L. But the structure of H must
emerge in Eq. (19.28), so the correct expression must be

A2 = 1 +
2

µZ2e4
H(L2 + h̄2). (19.33)

Now we turn to the commutation relation of L and A. Of course,

L × L = ih̄L. (19.34)

and A is a vector, so, for example,

[Ax, Ly] = ih̄Az . (19.35)

How about A × A? It must be a constant vector, and therefore a multiple of
L and A. A is not possible, since it has an odd number of rs and ps, when
we recognize that r =

√
r · r. On the other hand, L has an even number. The

commutator 1
ih̄ [rk, pl] removes an even number, so A × A must have an even

number of rs and ps. Therefore we conclude

A× A = ih̄CL, or [Ax, Ay] = ih̄CLz, (19.36)

where C is a scalar constant. Find C from

[A, A2] =
2

µZ2e4
H [A, L2], (19.37)

since [A, H ] = 0 because dA/dt = 0. Then, for example,

[Az , A
2] = [Az , A

2
x +A2

y ] = ih̄C(AxLy + LyAx −AyLx − LxAy)

= ih̄C(A × L − L × A)z , (19.38)

on the one hand, and

[Az, L
2] = [Az , L

2
x + L2

y] = ih̄(LxAy +AyLx − LyAx −AxLy)

= −ih̄(A × L − L × A)z, (19.39)
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so comparing these two we find

C = − 2

µZ2e4
H. (19.40)

We have therefore,

[Lx, Ly] = ih̄Lz, [Ax.Ly] = ih̄Az , [Ax, Ay] = ih̄

( −2H

µZ2e4

)

Lz, (19.41)

etc. Now define

J(±) =
1

2

(

L ±
√

µZ2e4

−2H
A

)

, (19.42)

and we find (denote temporarily s =
√

µZ2e4/(−2H))

[J (+)
x , J (+)

y ] =
1

4
[Lx + sAx, Ly + sAy] =

ih̄

4
(Lz + Lz + sAz + sAz)

= ih̄J (+)
z , (19.43a)

[J (−)
x , J (−)

y ] =
1

4
[Lx − sAx, Ly − sAy] =

ih̄

4
(Lz + Lz − sAz − sAz)

= ih̄J (−)
z , (19.43b)

[J (+)
x , J (−)

y ] =
1

4
[Lx + sAx, Ly − sAy] =

ih̄

4
(Lz − Lz + sAz − sAz)

= 0, (19.43c)

etc. We see that J(±) are two independent angular momenta. These momenta
have equal magnitude:

(J(±))2 =
1

4

(

L2 ± s(A · L + L · A) + s2A2
)

, (19.44)

because the cross term vanishes according to Eq. (19.26). Now substituting in
Eq. (19.33), and recalling the definition of s, the L2 cancels, and we have

(J(±))2 =
1

4

(

µZ2e4

−2H
− h̄2

)

, (19.45)

and denoting the common value of (J(±))2 by j(j+1)h̄2, j = 0, 1/2, 1, 3/2, 2, . . .,
we find

h̄2[4j(j + 1) + 1] = h̄2(2j + 1)2 =

(

µZ2e4

−2H

)′

=
µZ2e4

−2E
, (19.46)

where E is the energy eigenvalue. Denote 2j + 1 = n, where n = 1, 2, 3, . . .. We
obtain the Bohr energy levels,

En = −µZ
2e4

2n2h̄2 , (19.47)
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without encountering n = 0.
The Bohr energy levels follow from an exact quantum-mechanical treatment.

The fact that this agrees with experiment validates our use of the Coulomb
potential. It is not merely good agreement with the spectrum of hydrogen that
is obtained, but through the nuclear mass M dependence in µ = mM/(M +m).
This is in agreement with the small shift between the H and He+ spectra, the
latter corrected for the factor of Z2 = 4. Rydberg atoms, where an outer
electron is in a highly excited state, can also be described approximately by this
energy formula.

The number of states having a given energy, that is, the “degeneracy” of the
energy levels, is the number of states for which n = 2j + 1 has a definite value.

Since there are 2j + 1 values of m for each of J
(+)
z and J

(−)
z , this number is

(2j + 1) × (2j + 1) = n2 = 1, 4, 9, . . . . (19.48)

The state of lowest energy, with n = 1, is unique. Since L = J(+) + J(−),
and this state is one for which J(+) = J(−) = 0, this state is also characterized
by the angular momentum quantum numbers l = 0, m = 0. In general, we can
denote the states of the hydrogen atom by the values of these three quantum
numbers,

|n, l,m〉. (19.49)

The lowest energy state obeys

L|1, 0, 0〉 = 0, A|1, 0, 0〉 = 0. (19.50)

The latter equation reads

(

r

r
− 1

µZe2
(p× L − ih̄p)

)

|1, 0, 0〉. (19.51)

Because this is a zero angular momentum state, this equation reads

(

r

r
+

ih̄p

µZe2

)

|1, 0, 0〉 = 0. (19.52)

We construct a differential equation for the wavefunction by multiplying on the
left by a position eigenstate,

0 = 〈r′|
(

r

r
+

ih̄p

µZe2

)

|1, 0, 0〉 =

(

r′

r′
+

ih̄

µZe2
h̄

i

∂

∂r′

)

ψ100(r
′), (19.53)

where the ground-state wavefunction is

ψ100(r
′) = 〈r′|100〉. (19.54)

Define the “Bohr radius” by

a0 =
h̄2

µe2
. (19.55)
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Then this differential equation reads

(

r′

r′
+
a0

Z

∂

∂r′

)

ψ100(r
′) = 0. (19.56)

The radial component of this vector equation is

(

1 +
a0

Z

∂

∂r

)

ψ100(r) (19.57)

where we’ve simplified the notation by dropping the primes, and recognizing that
the ground-state wavefunction depends only on the distance from the nucleus,
r = |r|, which follows from the other components of the gradient. This is as
expected for a state of zero angular momentum. The solution to this equation
is immediate:

ψ100(r) = Ae−Zr/a0 . (19.58)

To determine A, we apply the normalization condition,

∫

(dr)|ψ100(r)|2 = 1. (19.59)

Here the volume element is

(dr) = 4πr2dr, (19.60)

and so we have (choosing the phase to be zero)

4πA2

∫ ∞

0

r2dr e−2Zr/a0 = 4πA2
( a0

2Z

)3
∫ ∞

0

dxx2 e−x. (19.61)

Since the last integral is 2, the normalization constant is

A =

(

Z3

πa3
0

)1/2

, (19.62)

and so the normalized ground-state wavefunction of the hydrogenic atom is

ψ100(r) =

(

Z3

πa3
0

)1/2

e−Zr/a0 . (19.63)

The probability amplitude is concentrated in a region of characteristic size a0/Z,
and it, and the corresponding probability, are sketched in Fig. 19.2.

The next-to-lowest energy levels are n = 2 or j = 1/2. These for states
correspond to the combination of two spins of 1/2. This is interesting, because
these spin-1/2’s certainly have no real existence. The state with m(+) = m(−) =
+ 1

2 , i.e., n = 2, m = 1, and therefore l = 1, is characterized by

(Jx + iJy)(+)|211〉 = 0, (Jx + iJy)
(−)|211〉 = 0, (19.64)
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Figure 19.2: Ground-state wavefunction for the hydrogen atom (Z = 1), and
the square of the wavefunction (multiplied by 4πr2), plotted versus r in units
of the Bohr radius a0

because it is both the highest m(+) state and the highest m(−) state. Equiva-
lently, it is the highest m state,

(Lx + iLy)|211〉 = 0, (19.65)

and satisfies as well
(Ax + iAy)|211〉. (19.66)

The corresponding wavefunction satisfies

〈r′|(Lx + iLy)|211〉 = (Lx + iLy)ψ211(r
′) = L+ψ211(r

′) = 0. (19.67)

In the latter equation, L+ is a differential operator.
Later, we will discuss the general approach to solving this problem in spher-

ical polar coordinates, using spherical harmonics. For the present, however, it
will suffice to note that

L+ = (ypz − zpy + izpx − ixpz) →
h̄

i
[(y − ix)∂z − z(∂y − i∂x)]

= h̄[−(x+ iy)∂z + z(∂x + i∂y)]. (19.68)

Now we note
(∂x + i∂y)(x+ iy) = 1 − 1 = 0, (19.69)

and that if we write the wavefunction as

ψ211 = (x+ iy)f(r), r2 = x2 + y2 + z2, (19.70)
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we find

L+ψ211 = h̄(x+ iy)[−(x+ iy)∂z + z(∂x + i∂y)]f(r)

= h̄(x+ iy)f ′(r)

[

−(x+ iy)
∂r

∂z
+ z

(

∂r

∂x
+ i

∂r

∂y

)]

= h̄(x+ iy)f ′(r)
[

−(x+ iy)
z

r
+ z

(x

r
+ i

y

r

)]

= 0. (19.71)

Thus the angular momentum condition (19.67) is satisfied.
To determine the radial function f , we use the second equation (19.66).

Recall that

A =
r

r
− 1

µZe2
(p × L − ih̄p), (19.72)

and then

(p × L)x + i(p× L)y = pyLz − pzLy + i(pzLx − pxLz) = ipzL+ − i(px + ipy)Lz.
(19.73)

Therefore, since
L+|211〉 = 0, (Lz − h̄)|211〉 = 0, (19.74)

we have

(Ax + iAy)|211〉 =

[

x+ iy

r
− 1

µZe2
(−2ih̄)(px + ipy)

]

|211〉 = 0. (19.75)

On the wavefunction, this means

(

x+ iy

r
+

2a0

Z

(

∂

∂x
+ i

∂

∂y

))

ψ211(r) = 0, (19.76)

again dropping the primes on eigenvalues. Now using the construction (19.70)
and the identity (19.69), we see that

(∂x + i∂y)f(r) =
x+ iy

r

d

dr
f(r). (19.77)

so the differential equation (19.76) reads

2a0

Z

d

dr
f(r) + f(r) = 0, (19.78)

which has solution
f(r) = Ce−Zr/(2a0). (19.79)

So the 211 wavefunction is

ψ211(r) = C(x+ iy)e−Zr/2a0 = Cr sin θeiφe−Zr/2a0 , (19.80)

writing this in spherical polar coordinates, and recalling that

cosφ+ i sinφ = eiφ. (19.81)
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The constant C is determined, up to a phase, by the normalization condition,
that the probability of finding the electron somewhere is unity,

∫

(dr)|ψ211(r)|2 = 1, (19.82)

or

1 =

∫ ∞

0

dr r2
∫ π

0

dθ sin θ

∫ 2π

0

dφ |C|2r2 sin2 θe−Zr/a0

= |C|2
∫ ∞

0

dr r4 e−Zr/a02π

∫

d cos θ(1 − cos2 θ)

=
8π

3
|C|2

(a0

Z

)5
∫ ∞

0

dxx4 e−x = 64π|C|2
(a0

Z

)5

, (19.83)

which gives the magnitude of the normalization constant:

|C| =

(

Z

a0

)5/2
1

8
√
π
, (19.84)

so, writing the wavefunction in a form comparable to that for the ground state,

ψ211(r) =
1√
2π

(

Z

2a0

)3/2
Z

2a0
(x+ iy)e−Zr/2a0

=
1

8
√
π

(

Z

a0

)5/2

r sin θeiφe−Zr/2a0 . (19.85)

The probability of finding the electron in a given elements of volume is

|ψ211|2(r, θ) =
1

64π

(

Z

a0

)5

r2 sin2 θ e−Zr/a0 . (19.86)

In the homework, you will work out the three other wavefunctions for n = 2,
those corresponding to l = 1, m = −1, 0, and the state with l = m = 0.

It is clear that to proceed further systematically, we need to learn more about
combining angular momenta, and describing the angular part of the wavefunc-
tions systematically. So we will now return to that subject.


