
Chapter 18

Dynamical Variables and

Time Evolution

Consider, for example, the angular momentum,

J = R × P + S. (18.1)

In general, R, P, S change in time; these are examples of dynamical variables.

Let v(t) be a dynamical variable (a particular one, or the whole class of
dynamical variables). Under the displacement of the time origin,

t̄ = t − δt, U = 1 +
i

h̄
(−δtH), (18.2)

the new function of the new time equals the old function at the old time:

v(t) = v̄(t̄) = v̄(t − δt), (18.3)

or, by relabeling t → t + δt,

v̄(t) = v(t + δt). (18.4)

The only thing that matters is the relative time displacement. The quantum
mechanical version of this is generally

X̄ = U−1XU, U = 1 +
i

h̄
G, (18.5)

or

X̄ = X − δX, δX =
1

ih̄
[X, G]. (18.6)

On the other hand, by Taylor expanding Eq. (18.4) we have

v̄(t) = v(t) + δt
d

dt
v(t) = v(t) − δv(t), (18.7)
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so

δv(t) = −δt
d

dt
v(t) =

1

ih̄
[v(t),−δtH ], (18.8)

or
d

dt
v(t) =

1

ih̄
[v(t), H ]. (18.9)

The energy operator, or Hamiltonian, describes how the system evolves in time.
Suppose we have a function F (v(t), t) which involves a dynamical variable

as well as involving the time explicitly. We have seen an example of this in the
boost generator,

N = Pt − MR. (18.10)

Under the unitary time-evolution operator, the function changes:

F̄ = U−1F (v(t), t)U = F (U−1v(t)U, t) = F (v̄(t), t) = F (v(t), t) −
1

ih̄
[F,−δtH ],

(18.11)
so

F (v̄(t), t) − F (v(t), t)

δt
=

1

ih̄
[F, H ]. (18.12)

The left-hand side of this equation means, in the limit δt → 0

F (v(t + δt), t) − F (v(t), t)

δt
→

d

dt
F (v(t), t) −

∂

∂t
F (v(t), t), (18.13)

where the total derivative acts on both v(t) and t, while the partial derivative
removes that part of the time derivative which comes from the explicit appear-
ance of t. Thus we obtain the general formula, for a function of a dynamical
variable,

d

dt
F =

∂

∂t
F +

1

ih̄
[F, H ], (18.14)

which generalizes the equation (18.9) for the time evolution of a dynamical
variable.

As an example, consider the momentum [see Eq. (17.64a)],

d

dt
P(t) =

1

ih̄
[P(t), H ] = 0, (18.15)

because there is no explicit appearance of t, because displacements make no
reference to time. This states that momentum is conserved. (Implicitly, we are
considering the whole system with no external forces; a completely described iso-
lated system.) The angular momentum statement is similar, from Eq. (17.64b)

d

dt
J(t) =

1

ih̄
[J(t), H ] = 0, (18.16)

or angular momentum is conserved. What about boosts, where, as noted above,
t appears explicitly? From Eq. (17.64c),

d

dt
N(t) =

∂

∂t
N(t) +

1

ih̄
[N(t), H ] = P +

1

ih̄
[N, H ] = 0, (18.17)
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so N is also a constant in time.

d

dt
N = 0, N(t) = P(t)t − MR(t). (18.18)

How does this happen? We know P is constant, so

0 =
dN

dt
= P− M

dR(t)

dt
, (18.19)

or

P = MV(t), V(t) =
dR(t)

dt
, (18.20)

in terms of the velocity of the system. Thus the velocity V (of the center of
mass) is a constant, P/M . Again the identification of M with mass is seen.
Thus we conclude

P

M
=

d

dt
R(t) =

1

ih̄
[R(t), H ]. (18.21)

Therefore, this last gives information about the structure of the energy operator.
As noted above R, P are like q and p three times over, where recall that for

a finite displacement
e−iq′pqeiq′p = q − q′, (18.22)

so analogously,
e−iR′

·P/h̄
ReiR′

·P/h̄ = R − R
′. (18.23)

As in homework, we prove this directly by differentiation with respect to R
′:

∂

∂R′

l

(

e−iR′
·P/h̄RkeiR′

·P/h̄
)

= e−iR′
·P/h̄ i

h̄
[Rk, Pl]e

iR′
·P/h̄ = −δkl = −

∂R′

k

∂R′

l

,

(18.24)
because the various components of P commute,

[Pk, Pl] = 0. (18.25)

Supplying the constant of integration, we obtain the expected result,

e−iR′
·P/h̄

ReiR′
·P/h̄ = R − R

′. (18.26)

Similarly, the counterpart to

eip′qpe−ip′q = p − p′ (18.27)

is
eiP′

·R/h̄
Pe−iP′

·R/h̄ = P− P
′, (18.28)

because the different components of R commute,

[Rk, Rl] = 0. (18.29)

Then it follows for any function of R and P that

eiP′
·R/h̄F (R,P)e−iP′

·R/h̄ = F (R,P− P
′). (18.30)
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Let’s go to the infinitesimal limit, P
′
→ δP′,

eiδP′
·R/h̄F (R,P)e−iδP′

·R/h̄ = F (R,P − δP′), (18.31)

or

F +
i

h̄
[δP′

·R, F ] = F −δP′
·

∂F

∂P′
= F −δP ′

x

∂F

∂Px
−δP ′

y

∂F

∂Py
−δP ′

z

∂F

∂Pz
, (18.32)

or succinctly,
1

ih̄
[R, F ] =

∂F

∂P
. (18.33)

This formula is an immediate generalization of

1

ih̄
[Rk, Pl] = δkl, [Rk, Rl] = 0. (18.34)

In fact if F = Pl, this equation says

1

ih̄
[Rk, Pl] =

∂Pl

∂Pk
= δkl, (18.35)

while if F = Rl,
1

ih̄
[Rk, Rl] =

∂Rl

∂Pk
= 0. (18.36)

In the same way, from Eq. (18.26), we can show

1

ih̄
[P, F ] = −

∂F

∂R
, (18.37)

where again if F = Rl,

1

ih̄
[Pk, Rl] = −

∂Rl

∂Rk
= −δkl, (18.38)

and if F = Pl,
1

ih̄
[Pk, Pl] = −

∂Pl

∂Rk
= 0. (18.39)

Return at last to Eq. (18.21),

P

M
=

dR

dt
=

1

ih̄
[R(t), H ] =

∂H

∂P
, (18.40)

which looks like Hamilton’s equation. This implies that

H =
P

2

2M
+ Hint, (18.41)

where
∂Hint

∂P
= 0. (18.42)



165 Version of September 30, 2012

Hint is called the internal energy, whereas P
2/2M is the part of the energy

referring to the motion of the system as a whole. The momenta also advance in
time at a known rate,

dP

dt
= 0 =

1

ih̄
[P, H ] =

1

ih̄
[P, Hint], (18.43)

or

0 =
dP

dt
= −

∂Hint

∂R
, (18.44)

which is the other set of Hamilton’s equations. These results say that Hint does
not depend on either R or P.

Classical mechanics is derived by taking h̄ → 0, so that the quantum of action
is negligible, operator properties are irrelevant). But we see that Hamilton’s
equations hold in general.


