Chapter 18

Dynamical Variables and
Time Evolution

Consider, for example, the angular momentum,
J=R xP+8S. (18.1)

In general, R, P, S change in time; these are examples of dynamical variables.
Let v(t) be a dynamical variable (a particular one, or the whole class of
dynamical variables). Under the displacement of the time origin,

=t—dt, U:1+%@4ﬁn, (18.2)

|

the new function of the new time equals the old function at the old time:
v(t) = v(t) = v(t — t), (18.3)
or, by relabeling t — ¢ + 0t,
o(t) = v(t + dt). (18.4)

The only thing that matters is the relative time displacement. The quantum
mechanical version of this is generally

X =U"xU, U:1+%G (18.5)
or )
X=X-6X, 6X= %[X, G). (18.6)
i
On the other hand, by Taylor expanding Eq. (18.4) we have
o(t) =v(t) + 6t%v(t) = o(t) — dv(t), (18.7)
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SO

Sult) = —6t%v(t) - %[v(t), _5tH], (18.8)
or d 1
L) = L), ). (159)

The energy operator, or Hamiltonian, describes how the system evolves in time.

Suppose we have a function F(v(t),t) which involves a dynamical variable

as well as involving the time explicitly. We have seen an example of this in the
boost generator,

N =Pt - MR. (18.10)

Under the unitary time-evolution operator, the function changes:

1

F=U'F),t)U = F{U ()U,t) = F(o(t),t) = F(v(t),t) — E[F, —6tH),
(18.11)
i F(o(t),t) — F(o(t),t) 1
=~ = E[F, H]. (18.12)
The left-hand side of this equation means, in the limit §t — 0
F(u(t+6t),t) — F(v(t),t) d 9
5 - aF(v(t),t) — EF(v(t),t), (18.13)

where the total derivative acts on both v(t) and ¢, while the partial derivative
removes that part of the time derivative which comes from the explicit appear-
ance of t. Thus we obtain the general formula, for a function of a dynamical

variable,

d o 1
ZF =5 F+ —[F H), (18.14)

which generalizes the equation (18.9) for the time evolution of a dynamical
variable.
As an example, consider the momentum [see Eq. (17.64a)],

d 1
Pt = —
at® =

because there is no explicit appearance of ¢, because displacements make no
reference to time. This states that momentum is conserved. (Implicitly, we are
considering the whole system with no external forces; a completely described iso-
lated system.) The angular momentum statement is similar, from Eq. (17.64b)

[P(t), H] =0, (18.15)

d 1
23(t) = —[3(t), H] =0, (18.16)

or angular momentum is conserved. What about boosts, where, as noted above,
t appears explicitly? From Eq. (17.64c),

d 0 1

1
ZN(t) = 2 N(t) + —[N(t), H] = P + — [N, H] = 0, (18.17)
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so N is also a constant in time.

d
EN =0, N(@)=P@{)t— MR(1). (18.18)
How does this happen? We know P is constant, so
dN dR(t)
0 dt dt ’ (18.19)
o dR(t
P=MV(), V() = #, (18.20)

in terms of the velocity of the system. Thus the velocity V (of the center of
mass) is a constant, P/M. Again the identification of M with mass is seen.

Thus we conclude p p )
Therefore, this last gives information about the structure of the energy operator.
As noted above R, P are like ¢ and p three times over, where recall that for

a finite displacement

eiiq/pqeiq/p =q—d, (18.22)
so analogously, ) )
e R PIMRMPIN R - R/, (18.23)
As in homework, we prove this directly by differentiation with respect to R/:
8 7'Rl-P/h iR’ -P/h iR’ 7 D/ 8R/
i Rucl /): RP/Lip pleR P g o L
R (¢ ke ¢ 7, (B File M TOR
(18.24)
because the various components of P commute,
[P, P] = 0. (18.25)
Supplying the constant of integration, we obtain the expected result,
¢ R'P/IRRP/L _ R _ R/ (18.26)
Similarly, the counterpart to
eip/qpefip/q =p—p (18.27)
is
P R/hpe= P R/M _p _ P/, (18.28)
because the different components of R commute,
[Ry, R)] = 0. (18.29)

Then it follows for any function of R and P that
P RINP(R, P)e P R/M = F(R,P — P'). (18.30)
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Let’s go to the infinitesimal limit, P’ — P’,

PRI PR, P)e P R/M = (R, P — §P), (18.31)
or
i oF oF oF oF
F+—-[0P"-R,F]=F-d/P"- =F—-0P,— — 0P — — 6P, —, (18.32
ol ¥ op’ rap, OTvap, ~0:gp 1832)
or succinctly,
1 oF
- = —, 18.
R F] = (18.33)
This formula is an immediate generalization of
1
E[Rk, P =0, [Rk,Ri]=0. (18.34)

In fact if F' = P, this equation says

1 JP,
—_ Pl=—-—"— = 18.
3 (R, Pl P, Ok (18.35)
while if F = Ry,
1 OR,;
= [Be, Ri] = 25, = (18.36)

In the same way, from Eq. (18.26), we can show

1 OF
P Fl=—a (18.37)
where again if F' = Ry,
1 OR;
—[Pi, Ri] = —=—=-6 18.38
zh[ > 1] ORy. Kl ( )
and if F' = P,
1 0P,
— [Py, P =—==— =0. 18.39
in Do Pl = = 5g, (18.39)
Return at last to Eq. (18.21),
P dR 1 0OH
—=_"—"=_[R(t),H] = =— 18.4
which looks like Hamilton’s equation. This implies that
P2
H = — + Hyy, 18.41
Wi + Hint (18.41)
where SH
. (18.42)

oP
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Hiy is called the internal energy, whereas P?/2M is the part of the energy
referring to the motion of the system as a whole. The momenta also advance in
time at a known rate,

dp 1 1
. P oH
_ Yt int
=— R (18.44)

which is the other set of Hamilton’s equations. These results say that Hi,y does
not depend on either R or P.

Classical mechanics is derived by taking i — 0, so that the quantum of action
is negligible, operator properties are irrelevant). But we see that Hamilton’s
equations hold in general.



